
1

Limits of Reliable Communication with Low

Probability of Detection on AWGN Channels

Boulat A. Bash, Dennis Goeckel, Don Towsley

UMass Technical Report UM-CS-2012-003

Abstract

We present a square root limit on the amount of information transmitted reliably and with low

probability of detection (LPD) over additive white Gaussian noise (AWGN) channels. Specifically, if

the transmitter has AWGN channels to an intended receiver and a warden, both with non-zero noise

power, we prove that o(
√
n) bits can be sent from the transmitter to the receiver in n channel uses

while lower-bounding α + β ≥ 1 − ε for any ε > 0, where α and β respectively denote the warden’s

probabilities of a false alarm when the sender is not transmitting and a missed detection when the sender

is transmitting. Moreover, in most practical scenarios, a lower bound on the noise power on the channel

between the transmitter and the warden is known and O(
√
n) bits can be sent in n LPD channel uses.

Conversely, attempting to transmit more than O(
√
n) bits either results in detection by the warden with

probability one or a non-zero probability of decoding error at the receiver as n→∞.
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I. INTRODUCTION

Securing information transmitted over wireless links is of paramount concern for consumer,

industrial, and military applications. Typically data transmitted in wireless networks is secured

from interception by an eavesdropper using various encryption and key exchange protocols.

However, there are many real-life scenarios where standard cryptographic security is not suffi-

cient. Encrypted data arouses suspicion, and even the most theoretically robust encryption can

often be defeated by a determined adversary using non-computational methods such as side-

channel analysis. Such scenarios require low probability of detection (LPD) communication

which prevents the detection of transmissions in the first place.

While practical LPD communications has been studied by the spread-spectrum community

[1, Pt. 5, Ch. 1], the information-theoretic limits have not been explored. We thus develop

fundamental bounds on LPD communication over wireless channels subject to additive white

Gaussian noise (AWGN). In our scenario, Alice communicates with Bob over an AWGN channel,

while passive eavesdropper Warden Willie attempts to detect her transmission. The channel

between Alice and Willie is also AWGN and Willie is passive in that he does not actively jam

Alice’s channel. Alice transmits low-power signals to Bob that Willie attempts to classify as

either noise on his channel from Alice or Alice’s signals to Bob. If he detects communication,

Willie can potentially shut the channel down or otherwise punish Alice. If the noise on the

channel between Willie and Alice has non-zero power, Alice can communicate with Bob while

tolerating a certain probability of detection, which she can drive down by transmitting with low

enough power. Thus, Alice potentially transmits non-zero mutual information across the LPD

channel to Bob in n uses of the channel.

Our problem is related to imperfect steganography, which considers hiding information by

altering the properties of fixed-size, finite-alphabet covertext objects (such as images or software

binary code) while tolerating some fixed probability of detection of hidden information by the

warden. The square root law of steganography in the passive warden environment states that
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O(
√
n) symbols in covertext of size n may safely be modified to hide an O(

√
n log n)-bit

steganographic message [2, Ch. 13], where the log n factor stems directly from the fact that

transmission to Bob is noiseless [2, Ch. 8]. In our scenario, Alice uses the noise on her channel

to Willie instead of the statistical properties of the covertext to hide information. However, having

to code against the noise on her channel to Bob allows only O(
√
n) bits to be sent in n uses of

the LPD channel.1 The mathematics of statistical hypothesis testing yields a square root law in

both problems, but as answers to different questions due to the fundamental differences in the

communication channels. This relationship is discussed further at the end of Section III.

We state our main result that limits the amount of information that can be transmitted on

the LPD channel between Alice and Bob using asymptotic notation [3, Ch. 3.1] where f(n) =

O(g(n)) denotes an asymptotically tight upper bound on f(n) (i.e. there exist constants m,n0 > 0

such that 0 ≤ f(n) ≤ mg(n) for all n ≥ n0), f(n) = o(g(n)) denotes an upper bound on f(n)

that is not asymptotically tight (i.e. for any constant m > 0, there exists constant n0 > 0 such

that 0 ≤ f(n) < mg(n) for all n ≥ n0), and f(n) = ω(g(n)) denotes a lower bound on f(n)

that is not asymptotically tight (i.e. for any constant m > 0, there exists constant n0 > 0 such

that 0 ≤ mg(n) < f(n) for all n ≥ n0):

Theorem (Square root law). Suppose the channels between Alice and each of Bob and Willie

experience additive white Gaussian noise (AWGN) with powers σ2
b > 0 and σ2

w > 0, respectively,

where σ2
b and σ2

w are constants. Denote by α the probability that Willie raises a false alarm when

Alice is not transmitting, and by β the probability that Willie does not detect a transmission

by Alice. Then, provided that Alice and Bob have a shared secret of sufficient length, for any

ε > 0 and unknown σ2
w, Alice can reliably (i.e. with arbitrary low probability of decoding error)

transmit o(
√
n) information bits to Bob in n channel uses while lower-bounding Willie’s sum

1The amount of information that could be transmitted by Alice to Bob using a noiseless LPD channel would be infinite due

to it being continuously-valued, and a noiseless channel between Alice and Willie would preclude the existence of an LPD

channel between Alice and Bob.
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of the probabilities of detection errors α + β ≥ 1− ε. Moreover, if Alice knows a lower bound

σ̂2
w > 0 to the power of the AWGN on Willie’s channel σ2

w (i.e. σ2
w ≥ σ̂2

w), she can transmit

O(
√
n) bits in n channel uses while maintaining the lower bound α + β ≥ 1 − ε. Conversely,

if Alice attempts to transmit ω(
√
n) bits in n channel uses, then, as n → ∞, either Willie

detects her with arbitrarily low probability of error or Bob cannot decode her message reliably,

regardless of the length of the shared secret.

To enable LPD communication, Alice and Bob possess a common secret randomness resource.

While in the information-theoretic analysis of encrypted communication such a resource is a one-

time pad [4], in the construction of our proofs it is a secret codebook that is shared between

Alice and Bob prior to communication and which is the only component of their system that

is unknown to Willie. This follows “best practices” in security system design as the security of

the LPD communication system depends only on the shared secret [5].

We also note that, since LPD communication allows transmission of O(
√
n) bits in n channel

uses and, considering limn→∞
O(
√
n)

n
= 0, the information-theoretic capacity of the LPD channel

is zero, unlike many other communications settings where it is a positive constant. However,

a significant amount of information can still be transmitted using this channel. We are thus

concerned with the number of information bits transmitted in n channel uses, as opposed to the

bits per channel use.

After introducing our channel model and hypothesis testing background in Section II, we prove

the achievability of the square root law in Section III. We then prove the converse in Section IV.

We discuss the relationship to previous work, the impact of Willie’s prior knowledge of Alice’s

transmission state, and the mapping to the continuous-time channel in Section V, and conclude

in Section VI.
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II. PREREQUISITES

A. Channel Model

We use the discrete-time AWGN channel model with real-valued symbols (and defer discussion

of the mapping to a continuous-time channel to Section V-C). Our formal system framework is

depicted in Figure 1. Alice transmits a vector of n real-valued symbols f = {fi}ni=1. Bob receives

vector yb = {y(b)i }ni=1 where y
(b)
i = fi + z

(b)
i with an independent and identically distributed

(i.i.d.) z(b)i ∼ N (0, σ2
b ). Willie observes vector yw = {y(w)i }ni=1 where y

(w)
i = fi + z

(w)
i , with

i.i.d. z(w)i ∼ N (0, σ2
w). Willie uses statistical hypothesis tests on yw to determine whether Alice

is communicating, which we discuss next.

secret

? ?

Alice -f1, f2, . . . , fn r
?m - Willie

decide z(w)
1 , z

(w)
2 , . . . , z

(w)
n or

f1 + z
(w)
1 , f2 + z

(w)
2 , . . . , fn + z

(w)
n ?

-z
(w)
i

z
(b)
i

m
6

- Bob
decode f1, f2, . . . , fn

Fig. 1. System framework: Alice and Bob share a secret before the transmission. Alice encodes information into a vector of real

symbols f = {fi}ni=1 and transmits it on an AWGN channel to Bob, while Willie attempts to classify his vector of observations

of the channel from Alice yw as either an AWGN vector zw = {z(w)
i }ni=1 or a vector {fi+z(w)

i }ni=1 of transmissions corrupted

by AWGN.

B. Hypothesis Testing

Willie expects vector yw of n channel readings to be consistent with his channel noise model.

He performs a statistical hypothesis test on this vector, with the null hypothesis H0 being that

Alice is not communicating. In this case each sample is i.i.d. y(w)i ∼ N (0, σ2
w). The alternate

hypothesis H1 is that Alice is transmitting, which corresponds to samples y(w)i coming from a
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different distribution. Willie can tolerate some false positives, or cases when his statistical test

incorrectly accuses Alice. This rejection of H0 when it is true is known as the type I error

(or false alarm), and, following the standard nomenclature, we denote its probability by α [6].

Willie’s test may also miss Alice’s transmissions. Acceptance of H0 when it is false is known

as the type II error (or missed detection), and we denote its probability by β. We assume that

Willie uses classical hypothesis testing with equal prior probabilities of each hypothesis being

true (and discuss the generalization to unequal prior probabilities in Section V-B). Then, the

lower bound on the sum α + β characterizes the necessary trade-off between the false alarms

and the missed detections in the design of a hypothesis test.

III. ACHIEVABILITY OF SQUARE ROOT LAW

Willie’s objective is to determine whether Alice transmits given the vector of observations yw

of his channel from Alice. Denote the probability distribution of Willie’s channel observations

when Alice does not transmit (i.e. when H0 is true) as P0, and the probability distribution of the

observations when Alice transmits (i.e. when H1 is true) as P1. To strengthen the achievability

result, we assume that Alice’s channel input distribution, as well as the distribution of the AWGN

on the channel between Alice and Willie, are known to Willie. Then P0 and P1 are known to

Willie, and he can construct an optimal statistical hypothesis test (such as the Neyman–Pearson

test) that minimizes the sum of error probabilities α + β [6, Ch. 13]. The following holds for

such a test:

Fact 1 (Theorem 13.1.1 in [6]). For the optimal test,

α + β = 1− VT (P0,P1)

where VT (P0,P1) is the total variation distance between P0 and P1 defined as follows:

Definition 1 (Total variation distance [6]). The total variation distance between two continuous
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probability measures P0 and P1 is

VT (P0,P1) =
1

2
‖p0(x)− p1(x)‖1 (1)

where p0(x) and p1(x) are densities of P0 and P1, respectively, and ‖a− b‖1 is the L1 norm.

Implicit in the above is that the a priori probabilities of H0 and H1 are unknown to Willie.

We discuss the inclusion of knowledge of prior probabilities in Section V-B.

Since total variation lower-bounds the error of all hypothesis tests Willie can use, a clever

choice of f allows Alice to limit Willie’s detector performance. Unfortunately, the total variation

metric is unwieldy for products of probability measures, which are used in the analysis of the

vectors of observations. We thus use Pinsker’s inequality:

Fact 2 (Pinsker’s inequality (Lemma 11.6.1 in [7])).

VT (P0,P1) ≤
√

1

2
D(P0‖P1)

where relative entropy D(P0‖P1) is defined as follows:

Definition 2. The relative entropy (also known as Kullback–Leibler divergence) between two

probability measures P0 and P1 is:

D(P0‖P1) =

∫
X
p0(x) ln

p0(x)

p1(x)
dx (2)

where X is the support of p1(x).

If Pn is the distribution of a sequence {Xi}ni=1 where each Xi ∼ P is i.i.d., then:

Fact 3 (Relative entropy product). From the chain rule for relative entropy [7, Eq. (2.67)]:

D(Pn0‖Pn1 ) = nD(P0‖P1)

Relative entropy is directly related to Neyman–Pearson hypothesis testing via the Chernoff–

Stein Lemma [7, Ch. 11.8]: for a given α < ν with 0 < ν < 1
2
, limν→0 limn→∞

1
n

ln β∗ =
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−D(P0‖P1) where β∗ = min β. Thus, upper-bounding the relative entropy limits the performance

of the Neyman–Pearson hypothesis test. Indeed, the steganography community often concludes

their proofs by showing an upper bound on the relative entropy [2], [8]. However, we take the

extra step of lower-bounding α+β since it has a natural signal processing interpretation via the

receiver operating characteristic (ROC) curve [9, Ch. 2.2.2], which plots probability of detection

1 − β versus α. Since 1 − β ≥ α and α + β ≥ 1 − ε, small ε implies that the ROC curve lies

very close to the line of no-discrimination (the diagonal line where 1− β = α) over the entire

domain of α because α + ε ≥ 1− β ≥ α.

We use Taylor’s theorem with the Lagrange form of the remainder to upper-bound the relative

entropy, and here we restate it as a lemma.

Lemma 1 (Taylor’s theorem with the remainder). If f(x) is a function with n + 1 continuous

derivatives on the interval [u, v], then

f(v) =f(u) + f ′(u)(v − u) + . . .+
f (n)(u)

n!
(v − u)n

+
f (n+1)(ξ)

(n+ 1)!
(v − u)n+1 (3)

where f (n)(x) denotes the nth derivative of f(x), and ξ satisfies u ≤ ξ ≤ v.

The proof can be found in, e.g. [10, Ch. V.3]. Note that if the remainder term is negative on

[u, v], then the sum of the zeroth through nth order terms yields an upper bound on f(v).

We now state the achievability theorem under an average power constraint:

Theorem 1.1 (Achievability). Suppose Willie’s channel is subject to AWGN with average power

σ2
w > 0 and suppose that Alice and Bob share a secret of sufficient length. Then Alice can

maintain Willie’s sum of the probabilities of detection errors α+ β ≥ 1− ε for any ε > 0 while

reliably transmitting o(
√
n) bits to Bob over n uses of an AWGN channel when σ2

w is unknown

and O(
√
n) bits over n channel uses if she knows a lower bound σ2

w ≥ σ̂2
w for some σ̂2

w > 0.

Proof: Construction: Alice’s channel encoder takes as input blocks of length M bits and
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encodes them into codewords of length n at the rate of R = M/n bits/symbol. We employ random

coding arguments and independently generate 2nR codewords {c(Wk), k = 1, 2, . . . , 2nR} from

Rn for messages {Wk}2
nR

k=1, each according to pX(x) =
∏n

i=1 pX(xi), where X ∼ N (0, Pf ) and

Pf is defined later. The codebook is used only to send a single message and is the secret not

revealed to Willie, though he knows how it is constructed, including the value of Pf . The size

of this secret is discussed in the remark following the proof of Theorem 1.2.

The channel between Alice and Willie is corrupted by AWGN with power σ2
w. Willie applies

statistical hypothesis testing on a vector of n channel readings yw to decide whether Alice

transmits. Next we show how Alice can limit the performance of Willie’s methods.

Analysis: Consider the case when Alice transmits codeword c(Wk). Suppose that Willie

employs a detector that implements an optimal hypothesis test on his n channel readings. His

null hypothesis H0 is that Alice does not transmit and that he observes noise on his channel. His

alternate hypothesis H1 is that Alice transmits and that he observes Alice’s codeword corrupted

by noise. By Fact 1, the sum of the probabilities of Willie’s detector’s errors is expressed by

α + β = 1 − VT (P0,P1), where the total variation distance is between the distribution P0 of n

noise readings that Willie expects to observe under his null hypothesis and the distribution P1

of the codeword transmitted by Alice corrupted by noise. Alice can lower-bound the sum of the

error probabilities by upper-bounding the total variation distance: VT (P0,P1) ≤ ε.

The realizations of noise z(w)i in vector zw are zero-mean i.i.d. Gaussian random variables with

variance σ2
w, and, thus, P0 = Pnw where Pw = N (0, σ2

w). Recall that Willie does not know the

codebook. Therefore, Willie’s probability distribution of the transmitted symbols is of zero-mean

i.i.d. Gaussian random variables with variance Pf . Since noise is independent of the transmitted

symbols, Willie observes vector yw, where y
(w)
i ∼ N (0, Pf + σ2

w) = Ps is i.i.d., and thus,

P1 = Pns . By Facts 2 and 3:

VT (Pnw,Pns ) ≤
√

1

2
D(Pnw‖Pns ) =

√
n

2
D(Pw‖Ps)
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In our case the relative entropy is:

D(Pw‖Ps) =
1

2

ln

(
1 +

Pf
σ2
w

)
−

(
1 +

(
Pf
σ2
w

)−1)−1
Since the first three derivatives of D(Pw‖Ps) with respect to Pf are continuous, we can apply

Lemma 1. The zeroth and first order terms of the Taylor series expansion with respect to Pf

around Pf = 0 are zero. However, the second order term is:

P 2
f

2!
× ∂2D(Pw‖Ps)

∂P 2
f

∣∣∣∣∣
Pf=0

=
P 2
f

4σ4
w

That relative entropy is locally quadratic is well-known [11, Ch. 2.6]; in fact ∂2D(Pw‖Ps)
∂P 2

f

∣∣∣
Pf=0

=

1
2σ4
w

is the Fisher information that an observation of noise carries about its power. Now, the

remainder term is:

P 3
f

3!
× ∂3D(Pw‖Ps)

∂P 3
f

∣∣∣∣∣
Pf=ξ

=
P 3
f

3!
× ξ − 2σ2

w

(ξ + σ2
w)4

where ξ satisfies 0 ≤ ξ ≤ Pf . Suppose Alice sets her average symbol power Pf ≤ cf(n)√
n

, where

c = 2ε
√

2 and f(n) = O(1) is a function defined later. Since the remainder is negative when

Pf < 2σ2
w, for n large enough, we can upper-bound relative entropy with the second order term

as follows:

VT (Pnw,Pns ) ≤ Pf
2σ2

w

√
n

2
≤ εf(n)

σ2
w

(4)

In most practical scenarios Alice knows a lower bound σ2
w ≥ σ̂2

w and can set f(n) = σ̂2
w (a

conservative lower bound is the thermal noise power of the best currently available receiver).

If σ2
w is unknown, Alice can set f(n) such that f(n) = o(1) and f(n) = ω(1/

√
n) (the latter

condition is needed to bound Bob’s decoding error probability). In either case, Alice upper-

bounds VT (Pnw,Pns ) ≤ ε, limiting the performance of Willie’s detector.

Next we examine the probability Pe of Bob’s decoding error averaged over all possible

codebooks. Since Alice’s symbol power Pf is a decreasing function of the codeword length
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n, the standard channel coding results for constant power (and constant rate) do not directly

apply. Let Bob employ a maximum-likelihood (ML) decoder (i.e. minimum distance decoder)

to process the received vector yb when c(Wk) was sent. The decoder suffers an error event

Ei(c(Wk)) when yb is closer to another codeword c(Wi), i 6= k. The decoding error probability,

averaged over all codebooks, is then:

Pe = Ec(Wk)

[
P
(
∪2nRi=0,i 6=kEi(c(Wk))

)]
≤ Ec(Wk)

 2nR∑
i=0,i 6=k

P (Ei(c(Wk)))

 (5)

=
2nR∑

i=0,i 6=k

Ec(Wk) [P (Ei(c(Wk)))] (6)

where EX [·] denotes the expectation operator over random variable X and (5) follows from

the union bound. Let d = c(Wk)− c(Wi). Then ‖d‖2 is the distance between two codewords,

where ‖ ·‖2 is the L2 norm. Since codewords are independent and Gaussian, dj ∼ N (0, 2Pf ) for

j = 1, 2, . . . , n and ‖d‖22 = 2PfU , where U ∼ χ2
n, with χ2

n denoting the chi-squared distribution

with n degrees of freedom. Therefore, by [12, Eq. (3.44)]:

Ec(Wk) [P (Ei(c(Wk)))] = EU

[
Q

(√
PfU

2σ2
b

)]
where Q(x) = 1√

2π

∫∞
x
e−t

2/2dt. Since Q(x) ≤ 1
2
e−x

2/2 [13, Eq. (5)] and Pf = cf(n)√
n

:

EU

[
Q

(√
PfU

2σ2
b

)]
≤ EU

[
exp

(
−cf(n)U

4
√
nσ2

b

)]

=

∫ ∞
0

e
− cf(n)u

4
√
nσ2
b

−u
2 2−

n
2 u

n
2
−1

Γ(n/2)
du (7)

= 2−n/2
(

1

2
+

cf(n)

4
√
nσ2

b

)−n/2
(8)
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where (8) is from the substitution v = u
(

1
2

+ cf(n)

4
√
nσ2

b

)
in (7) and the definition of the Gamma

function Γ(n) =
∫∞
0
xn−1e−xdx. Since 1

2
+ cf(n)

4
√
nσ2

b
= 2

log2

(
1
2
+

cf(n)

4
√
nσ2
b

)
:

Ec(Wk) [P (Ei(c(Wk)))] ≤ 2
−n

2
log2

(
1+

cf(n)

2
√
nσ2
b

)

for all i, and (6) becomes:

Pe ≤ 2
nR−n

2
log2

(
1+

cf(n)

2
√
nσ2
b

)
(9)

Since f(n) = ω(1/
√
n), if rate R = ρ

2
log2

(
1 + cf(n)

2
√
nσ2

b

)
for a constant ρ < 1, as n increases, the

probability of Bob’s decoding error averaged over all codebooks decays exponentially to zero

and Bob obtains nR = nρ
2

log2

(
1 + cf(n)

2
√
nσ2

b

)
LPD bits in n channel uses. Since ln(1 + x) ≤ x

with equality when x = 0, nR ≤
√
nρcf(n)

4σ2
b ln 2

, approaching equality as n gets large. Thus, Bob

receives o(
√
n) bits in n channel uses, and O(

√
n) bits in n channel uses if f(n) = σ̂2

w.

Unlike Shannon’s coding theorem for AWGN channels [7, Theorem 9.1.1, p. 268], we cannot

purge codewords from our codebook to lower the maximal decoding error probability, as that

would violate the i.i.d. condition for the codeword construction that is needed to limit Willie’s

detection ability in our proof. However, it is reasonable that users in sensitive situations at-

tempting to hide their communications would prefer uniform rather than average decoding error

performance, in essence demanding that the specific codebook they are using is effective. In

such a scenario, the construction of Theorem 1.2 can be used with the modification given by the

remark following its proof. This construction also satisfies both the peak and the average power

constraints, as demonstrated below.

Theorem 1.2 (Achievability under a peak power constraint). Suppose Alice’s transmitter is

subject to the peak power constraint b, 0 < b < ∞, and Willie’s channel is subject to AWGN

with power σ2
w > 0. Also suppose that Alice and Bob share a secret of sufficient length. Then

Alice can maintain Willie’s sum of the probabilities of detection errors α + β ≥ 1 − ε for any

ε > 0 while reliably transmitting o(
√
n) bits to Bob over n uses of an AWGN channel when σ2

w
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is unknown and O(
√
n) bits in n channel uses if she knows a lower bound σ2

w ≥ σ̂2
w for some

σ̂2
w > 0.

To prove Theorem 1.2, we introduce a variant of the Leibniz integral rule as a lemma:

Lemma 2 (Leibniz integral rule). Suppose that f(x, a) is defined for x ≥ x0 and a ∈ [u, v], u < v,

and satisfies the following properties:

1) f(x, a) is continuous on [u, v] for x ≥ x0;

2) ∂f(x,a)
∂a

is continuous on [u, v] for x ≥ x0;

3) There is a function g(x) such that |f(x, a)| ≤ g(x) and
∫∞
x0
g(x)dx <∞;

4) There is a function h(x) such that |∂f(x,a)
∂a
| ≤ h(x) and

∫∞
x0
h(x)dx <∞.

Then ∂
∂a

∫∞
x0
f(x, a)dx =

∫∞
x0

∂f(x,a)
∂a

dx.

The proof of Lemma 2 is available in [10, Ch. XIII.3]. We now prove Theorem 1.2.

Proof (Theorem 1.2): Construction: Alice encodes the input in blocks of length M bits

into codewords of length n at the rate R = M/n bits/symbol with the symbols drawn from

alphabet {−a, a}, where a satisfies the peak power constraint a2 < b and is defined later. We

independently generate 2nR codewords {c(Wk), k = 1, 2, . . . , 2nR} for messages {Wk} from

{−a, a}n according to pX(x) =
∏n

i=1 pX(xi), where pX(−a) = pX(a) = 1
2
. As in the proof

of Theorem 1.1, this single-use codebook is not revealed to Willie, though he knows how it

is constructed, including the value of a. While the entire codebook is secretly shared between

Alice and Bob, in the remark following the proof we discuss how to reduce the amount of shared

secret information.

Analysis: When Alice transmits a symbol during the ith symbol period, she transmits −a or a

equiprobably by construction and Willie observes the symbol corrupted by AWGN. Therefore,
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Ps = 1
2

(N (−a, σ2
w) +N (a, σ2

w)), and, with Pw = N (0, σ2
w), we have:

D(Pw‖Ps) =

∫ ∞
−∞

e
− x2

2σ2w

√
2πσw

ln
e
− x2

2σ2w

1
2

(
e
− (x+a)2

2σ2w + e
− (x−a)2

2σ2w

)dx (10)

Since (10) is an even function, we assume a ≥ 0.

While there is no closed-form expression for (10), its integrand is well-behaved, allowing the

application of Lemma 1 to (10). The Taylor series expansion with respect to a around a = 0 can

be performed using Lemma 2. We demonstrate that the conditions for Lemmas 1 and 2 hold in

[14, Appendix B]. The zeroth through third order terms of the Taylor series expansion of (10)

are zero, as is the fifth term. The fourth order term is:

a4

4!
× ∂4D(Pw‖Ps)

∂a4

∣∣∣∣
a=0

=
a4

4σ4
w

Suppose Alice sets a2 ≤ cf(n)√
n

, where c and f(n) are defined as in Theorem 1.1. The sixth

derivative of (10) with respect to a, is derived in [14, Appendix B], where we also show that

it is continuous with respect to a and negative when evaluated at a = 0. Thus, there exists a

neighborhood [0, µ] such that, for all ξ ∈ [0, µ], the remainder term a6

6!
× ∂6D(Pw‖Ps)

∂a6

∣∣∣
a=ξ
≤ 0.

Then, for n large enough, we can apply Lemma 1 to upper-bound relative entropy with the

fourth order term as follows:

VT (Pnw,Pns ) ≤ a2

2σ2
w

√
n

2
≤ εf(n)

σ2
w

(11)

Since the power of Alice’s symbol is a2 = Pf , (11) is identical to (4) and Alice obtains the

upper bound VT (Pnw,Pns ) ≤ ε, limiting the performance of Willie’s detector.

Next let’s examine the probability Pe of Bob’s decoding error averaged over all possible

codebooks. As in Theorem 1.1, we cannot directly apply the standard constant-power channel

coding results to our system where the symbol power is a decreasing function of the codeword

length. We upper-bound Bob’s decoding error probability by analyzing a suboptimal decoding

scheme. Suppose Bob uses a hard-decision device on each received symbol y(b)i = fi + z
(b)
i
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via the rule f̂i =
{
a if y(b)i ≥ 0;−a otherwise

}
, and applies an ML decoder on its output. The

effective channel for the encoder/decoder pair is a binary symmetric channel with cross-over

probability pe = Q(a/σb) and the probability of the decoding error averaged over all possible

codebooks is Pe ≤ 2nR−n(1−H(pe)) [15], where H(p) = −p log2 p − (1 − p) log2(1 − p) is the

binary entropy function. We expand the analysis in [16, Section I.2.1] to characterize the rate

R. We use Lemma 1 to upper-bound pe ≤ 1
2
− 1√

2π

(
a
σb
− a3

6σ3
b

)
, p

(UB)
e , where p(UB)

e is the sum

of the zeroth through second terms of the Taylor series expansion of Q(a/σb) around a = 0.

The remainder term is non-positive for a/σb satisfying 8a6

σ6
b
− 60a4

σ4
b

+ 90a2

σ2
b
− 15 ≤ 0, and, since

a2 = cf(n)√
n

, the upper bound thus holds for large enough n. Since H(p) is a monotonically

increasing function on the interval
[
0, 1

2

]
, H(pe) ≤ H(p

(UB)
e ). The Taylor series expansion of

H(p
(UB)
e ) with respect to a around a = 0 yields H(p

(UB)
e ) = 1 − a2

σ2
bπ ln 2

+ O(a4). Substituting

a2 = cf(n)√
n

, we obtain Pe ≤ 2
nR−

√
ncf(n)

σ2
b
π ln 2

+O(1)
. Since f(n) = ω(1/

√
n), if rate R = ρcf(n)√

nσ2
bπ ln 2

bits/symbol for a constant ρ < 1, the probability of Bob’s decoding error averaged over all

codebooks decays exponentially to zero as n increases and Bob obtains nR = o(
√
n) bits in n

channel uses, and O(
√
n) bits in n channel uses if f(n) = σ̂2

w.

Remarks

Employing the best codebook: The proof of Theorem 1.2 guarantees Bob’s decoding error

performance averaged over all binary codebooks. Following the standard coding arguments [7,

p. 204], there must be at least one binary alphabet codebook that has at least average probability

of error. Thus, to guarantee uniform performance, Alice and Bob must select “good” codebooks

for communications. However, choosing specific codebooks would violate the i.i.d. condition for

the codeword construction that is needed to limit Willie’s detection capability in our proof.

Consider a codebook that has at least average probability of error, but now assume that it is

public (i.e. known to Willie). Theorem 1.2 shows that Alice can use it to transmit O(
√
n) bits

to Bob in n channel uses with exponentially-decaying probability of error. However, since the

codebook is public, unless Alice and Bob take steps to protect their communication, Willie can
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use this codebook to detect Alice’s transmissions by performing the same decoding as Bob. Here

we demonstrate that to use a public codebook it suffices for Alice and Bob to share a secret

random binary vector and note that this resembles the one-time pad scheme from traditional

cryptography [4], but employed here for a very different application.

Suppose that, prior to communication, Alice and Bob generate and share binary vector k where

pK(k) =
∏n

i=1 pK(ki) with pK(0) = pK(1) = 1
2
. Alice XORs k and the binary representation

of the codeword c(Wk), resulting in an equiprobable transmission of −a and a when Alice

transmits a symbol during the ith symbol period. Provided k is never re-used and is kept secret

from Willie, the i.i.d. assumption for the vector yw in Theorem 1.2 holds without the need to

exchange an entire secret codebook between Alice and Bob. Bob decodes by XORing k with the

output of the hard-decision device prior to applying the ML decoder. While the square root law

implies that the shared O(n)-bit secret here is quadratic in the length M = O(
√
n) of a message,

we offer a coding scheme that, on average, requires an O(
√
n log n)-bit secret in Appendix A.

The development of LPD communication with a shared secret either linear or sublinear in the

message size is a subject of future research.

Relationship with Square Root Law in Steganography: The LPD communication problem is

related to steganography. A comprehensive review of steganography is available in a book by

Fridrich [2]. In finite-alphabet imperfect steganographic systems at most O(
√
n) symbols in the

original covertext of length n may safely be modified to hide a steganographic message of length

O(
√
n log n) bits [2, Ch. 13] [17]. This result was extended to Markov covertext [18] and was

shown to either require a key linear in the size of the message [19] or encryption of the message

prior to embedding [20].

The square root law in steganography has the same form as our square root law because both

laws follow from the property that relative entropy is locally quadratic [11, Ch. 2.6]: D(P0‖P1) =

δ2

2
J (θ)+O(δ3), where J (θ) =

∫
X

(
∂
∂θ

ln f(x; θ)
)2
f(x; θ)dx is the Fisher information associated

with parameter θ, and P0 and P1 are probability measures with density functions from the

same family over the support X , but with parameters differing by δ: p0(x) = f(x; θ) and
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p1(x) = f(x; θ+δ). Fisher information is thus used as a metric for steganographic security [21],

[22].

In a typical steganography scenario with a passive warden, coding techniques similar to

Hamming codes allow embedding of log(n) bits per changed symbol [2, Ch. 8], which make

hiding O(
√
n log n) bits in n symbols possible. However, due to the noise on the channel between

Alice and Bob, and the resultant need for error correction, the LPD channel only allows O(
√
n)

bits to be transmitted in n channel uses, as we prove in the following section.

IV. CONVERSE

Here, as in the proof of achievability, the channel between Alice and Bob is AWGN with

power σ2
b . Alice’s objective is to transmit a message Wk that is M = ω(

√
n) bits long to Bob

in n channel uses with arbitrarily small probability of decoding error as n gets large, while

limiting Willie’s ability to detect her transmission. Alice encodes each message Wk arbitrarily

into n symbols at the rate R = M/n symbols/bit. For an upper bound on the reduction in

entropy, the messages are chosen equiprobably.

Willie observes all n of Alice’s channel uses, but he is oblivious to her signal properties

and employs only a simple power detector. Nevertheless, we prove that, even if Willie only has

these limited capabilities, Alice cannot transmit a message with ω(
√
n) bits of information in n

channel uses without either being detected by Willie or having Bob suffer a non-zero decoding

error probability.

Theorem 2. If over n channel uses, Alice attempts to transmit a message to Bob that is ω(
√
n)

bits long, then, as n → ∞, either there exists a detector that Willie can use to detect her with

arbitrarily low sum of error probabilities α + β, or Bob cannot decode with arbitrarily low

probability of error.

Proof: Suppose Alice employs an arbitrary codebook {c(Wk), k = 1, . . . , 2nR}. Detection
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of Alice’s transmissions entails Willie deciding between the following hypotheses:

H0 : y
(w)
i = z

(w)
i , i = 1, . . . , n

H1 : y
(w)
i = fi + z

(w)
i , i = 1, . . . , n

Suppose Willie uses a power detector to perform the hypothesis test as follows: first, he collects

a row vector of n independent readings yw from his channel to Alice. Then he generates the test

statistic S = ywyTw
n

where xT denotes the transpose of vector x, and rejects or accepts the null

hypothesis based on a comparison of S to a threshold that we discuss later. We first show how

Willie can bound the error probabilities α and β of the power detector as a function of Alice’s

signal parameters. Then we show that if Alice’s codebook prevents Willie’s test from detecting

her, Bob cannot decode her transmissions without error.

If the null hypothesis H0 is true, Alice does not transmit and Willie observes AWGN on his

channel. Thus, y(w)i ∼ N (0, σ2
w), and the mean and the variance of S when H0 is true are:

E [S] = σ2
w (12)

Var [S] =
2σ4

w

n
(13)

Suppose Alice transmits codeword c(Wk) = {f (k)
i }ni=1. Then Willie’s vector of observations

yw,k = {y(w,k)i }ni=1 contains readings of mean-shifted noise y
(w,k)
i ∼ N (f

(k)
i , σ2

w). The mean

of each squared observation is E [y2i ] = σ2
w +

(
f
(k)
i

)2
and the variance is Var [y2i ] = E [y4i ] −

(E [y2i ])
2

= 4
(
f
(k)
i

)2
σ2
w + 2σ4

w. Denote the average symbol power of codeword c(Wk) by

Pk = c(Wk)c
T (Wk)
n

. Then the mean and variance of S when Alice transmits codeword c(Wk) are:

E [S] = σ2
w + Pk (14)

Var [S] =
4Pkσ

2
w + 2σ4

w

n
(15)

The variance of Willie’s test statistic (15) is computed by adding the variances conditioned on

c(Wk) of the squared individual observations Var [y2i ] (and dividing by n2) since the noise on

the individual observations is independent.
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The probability distribution for the vector of Willie’s observations depends on which hypoth-

esis is true. Denote by P0 the distribution when H0 holds, and P(k)
1 when H1 holds with Alice

transmitting message Wk. While P(k)
1 is conditioned on Alice’s codeword, we show that the

average symbol power Pk = c(Wk)c
T (Wk)
n

of codeword c(Wk) determines its detectability by this

detector, and that our result applies to all codewords with power of the same order.

If H0 is true, then S should be close to (12). Willie picks a threshold t and compares the

value of S to σ2
w + t. He accepts H0 if S < σ2

w + t and rejects it otherwise. Suppose that he

desires false positive probability α∗, which is the probability that S ≥ σ2
w + t when H0 is true.

We bound it using (12) and (13) with Chebyshev’s Inequality [7, Eq. (3.32)]:

α = P0

(
S ≥ σ2

w + t
)
≤ P0

(
|S − σ2

w| ≥ t
)
≤ 2σ4

w

nt2

Thus, to obtain α∗, Willie sets t = d√
n

, where d =
√
2σ2
w√

α∗
is a constant. As n increases, t decreases,

which is consistent with Willie gaining greater confidence with more observations.

Suppose Alice transmits codeword c(Wk). Then the probability of a miss β(k) is the probability

that S < σ2
w+ t, where t = d√

n
. We bound β(k) using (14) and (15) with Chebyshev’s Inequality:

β(k) = P(k)
1

(
S < σ2

w + t
)
≤ P(k)

1

(∣∣S − σ2
w − Pk

∣∣ ≥ Pk − t
)

≤ 4Pkσ
2
w + 2σ4

w

(
√
nPk − d)2

(16)

If the average symbol power Pk = ω(1/
√
n), limn→∞ β

(k) = 0. Thus, with enough observations,

Willie can detect with arbitrarily low error probability Alice’s codewords with the average symbol

power Pk = c(Wk)c
T (Wk)
n

= ω(1/
√
n). Note that Willie’s detector is oblivious to any details of

Alice’s codebook construction.

On the other hand, if the transmitted codeword has the average symbol power PU = O(1/
√
n),

then (16) does not upper-bound the probability of a missed detection arbitrarily close to zero

regardless of the number of observations. Thus, if Alice desires to lower-bound the sum of the

probabilities of error of Willie’s statistical test by α + β ≥ ζ > 0, her codebook must contain

a positive fraction γ of such low-power codewords. Let’s denote this subset of codewords with
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the average symbol power PU = O(1/
√
n) as U and examine the probability of Bob’s decoding

error Pe. The probability that a message from set U is sent is P (U) = γ, as all messages

are equiprobable. We bound Pe = Pe (U)P (U) + Pe
(
U
)
P
(
U
)
≥ γPe (U), where U is the

complement of U and Pe (U) is the probability of decoding error when a message from U is

sent:

Pe (U) =
1

|U|
∑
W∈U

Pe (c(W ) sent) (17)

where Pe (c(W ) sent) is the probability of error when codeword c(W ) is transmitted, | · | denotes

the set cardinality operator, and (17) holds because all messages are equiprobable.

When Bob uses the optimal decoder, Pe (c(W ) sent) is the probability that Bob decodes the

received signal as Ŵ 6= W . This is the probability of a union of events Ej , where Ej is the

event that sent message W is decoded as some other message Wj 6= W :

Pe (c(W ) sent) = P
(
∪2nRj=1,Wj 6=WEj

)
≥ P

(
∪Wj∈U\{W}Ej

)
, P(U)

e (18)

Here the inequality in (18) is due to the observation that the sets in the second union are

contained in the first. From the decoder perspective, this is due to the decrease in the decoding

error probability if Bob knew that the message came from U (reducing the set of messages on

which the decoder can err).

Our analysis of P(U)
e uses Cover’s simplification of Fano’s inequality similar to the proof of

the converse to the coding theorem for Gaussian channels in [7, Ch. 9.2]. Since we are interested

in P(U)
e , we do not absorb it into εn as done in (9.37) of [7]. Rather, we explicitly use:

H(W |Ŵ ) ≤ 1 + (log2 |U|)P(U)
e (19)

where H(W |Ŵ ) denotes the entropy of message W conditioned on Bob’s decoding Ŵ of W .

Noting that the size of the set U from which the messages are drawn is γ2nR and that, since

each message is equiprobable, the entropy of a message W from U is H(W ) = log2 |U| =
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log2 γ + nR, we utilize (19) and carry out steps (9.38)–(9.53) in [7] to obtain:

P(U)
e ≥ 1− PU/2σ

2
b + 1/n

log2 γ
n

+R
(20)

Since Alice transmits ω(
√
n) bits in n channel uses, her rate is R = ω(1/

√
n) bits/symbol.

However, PU = O(1/
√
n), and, as n → ∞, P(U)

e is bounded away from zero. Since γ > 0, Pe
is bounded away from zero if Alice tries to transmit ω(

√
n) bits reliably while beating Willie’s

simple power detector.

Goodput of Alice’s Communication

Define the goodput G(n) of Alice’s communication as the average number of bits that Bob

can receive from Alice over n channel uses with non-zero probability of a message being

undetected as n → ∞. Since only U contains such messages, by (20), the probability of her

message being successfully decoded by Bob is P(U)
s = 1− P(U)

e = O
(

1√
nR

)
and the goodput is

G(n) = γP(U)
s Rn = O(

√
n). Thus, Alice cannot break the square root law using an arbitrarily

high transmission rate and retransmissions while keeping the power below Willie’s detection

threshold.

V. DISCUSSION

A. Relationship to Previous Work in Communications

The relationship of our work to steganography has already been discussed in the remark at

the end of Section III. Here we relate our problem to other work in communication.

Spread Spectrum Communications: As wireless communication became prevalent, militaries

sought methods to protect their signals from being detected by the enemy, leading to the

development of spread spectrum communication. Spread spectrum communication provides an

LPD capability as well as resistance to jamming by transmitting a signal that requires bandwidth

WM on a much wider bandwidth Ws � WM , thereby reducing the power spectral density.

Most spread spectrum results address the practical aspects of spread spectrum architectures and
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a comprehensive review [1] is available. We are not aware of any prior work studying the

fundamental limits on the information that can be transmitted with low probability of detection

using spread spectrum technology. However, we note that, while we present our result for

narrowband channels, our analysis trivially translates to wideband channels as well: Alice can

reliably transmit O(
√
Wsn) LPD bits per n uses of a channel with bandwidth Ws. Thus, spread

spectrum systems are also limited by the square root law.

Information-theoretic secrecy: There exists a rich body of literature on the information-

theoretic secrecy resulting from the legitimate receiver having a better channel to the transmitter

than the adversary. Wyner was the first to show that if the adversary only has access to a noisy

version of the signal received by the legitimate receiver (using a wire-tap channel), then the

legitimate receiver can achieve a positive secure communication rate to the sender without the

use of a shared one-time pad [23]. Cheong and Hellman extended this result to Gaussian channels

[24], and Csiszár and Körner generalized it to broadcast channels [25]. Our approach considers

the adversary’s ability to detect rather than decode the transmissions, and it does not rely on

the channel to the legitimate receiver being better than the channel to the adversary. However,

recent succeeding work [26] claims that if the adversary and the legitimate receiver each has

a binary symmetric channel (BSC) to the transmitter, with the adversary having a significantly

noisier channel (i.e. a wire-tap BSC with positive secrecy rate), then the square-root law of LPD

communication is achievable without the use of a secret codebook.

Anonymous communication: Our problem is related to that of anonymous communication

[27], specifically the task of defeating the network traffic timing analysis. While the objective is

fundamentally the same, the setting and approaches are vastly different. The network traffic

analysis involves the adversary inferring network properties (such as source-relay pairs) by

correlating properties (such as the inter-packet timing) of two or more encrypted packet flows.

Protecting against this kind of analysis is costly, as one needs to make flows look statistically

independent by randomizing the timing of the packets, inserting dummy packets, or dropping

a portion of the data packets. Recent work thus addressed the amount of common information
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that can be embedded into two flows that are generated by independent renewal processes [28].

However, in our scenario Willie cannot perform traffic analysis (or any kind of network layer

analysis), as Alice prevents him (with high probability) from detecting her transmission in the

first place.

Cognitive Radio: The LPD communication problem is also related to that of establishing a

cognitive radio (CR) network [29]. An aspect of the CR problem is limiting the interference

from the secondary users’ radios to the primary users of the network. The LPD problem with

a passive warden can be cast within this framework by having primary users only listen [30].

However, the properties of the secondary signal that allow smooth operation of the primary

network are very different from those of an undetectable signal. While there is a lot of work on

the former topic, we are not aware of work by the CR community on the latter issue.

B. Impact of Adversary’s a priori Knowledge of the Transmission State on Achievability

The proofs of achievability (Theorems 1.1 and 1.2) in Section III assume that Willie has no

prior knowledge on whether Alice transmits or not. Here we argue that the assumption of a non-

trivial prior distribution on Alice’s transmission state does not impact our asymptotic results.

Suppose that Willie knows that Alice does not transmit (i.e. H0 is true) with probability π0 and

that she transmits (i.e. H0 is true) with probability π1 = 1−π0. Let Pe denote the probability that

Willie’s hypothesis test makes an error averaged over all observations. The following generalized

version of Fact 1 then holds:

Fact 4 (Generalized Fact 1). Pe ≥ min(π0, π1)−max(π0, π1)VT (P0,P1)

where, as in Section III, we denote the probability distribution of Willie’s channel observations

conditioned on Alice not transmitting (i.e. on H0 being true) as P0, and the probability distribution

of the observations conditioned on Alice transmitting (i.e. on H1 being true) as P1. The proof is

in Appendix C. Thus, while Fact 4 demonstrates that additional information about the likelihood
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of Alice transmitting helps Willie, the square root law still holds via the bounds on the total

variation distance VT (P0,P1).

C. Mapping to a Continuous-time Channel

We employ a discrete-time model throughout the paper. However, while this is commonly

assumed without loss of generality in standard communication theory, it is important to consider

whether some aspect of the LPD problem has been missed by focusing on discrete time.

Consider the standard communication system model, where Alice’s (baseband) continuous-

time waveform is given in terms of her discrete time transmitted sequence by:

x(t) =
n∑
i=1

fi p(t− iTs)

where Ts is the symbol period and p(·) is the pulse shaping waveform. Consider a (baseband)

system bandwidth constraint of W Hz. Now, if Alice chooses p(·) ideally as sinc(2Wt), where

sinc(x) = sin(πx)
πx

, then the natural choice of Ts = 1/2W results in no intersymbol interference

(ISI). From the Nyquist sampling criterion, both Willie (and Bob) can extract all of the infor-

mation from the signaling band by sampling at a rate of 2W samples/second, which then leads

directly to the discrete-time model of Section II and suits our demonstration of the fundamental

limits to Alice’s LPD channel capabilities. However, when p(·) is chosen in a more practical

fashion, for example, as a raised cosine pulse with some excess bandwidth, then sampling at a

rate higher than 2W has utility for signal detection even if the Nyquist ISI criterion is satisfied.

In particular, techniques involving cyclostationary detection are now applicable, and we consider

such a scenario a promising area for future work.

VI. CONCLUSION

Practitioners have always known that LPD communication requires the use of low power in

order to blend in with the noise on the adversary’s channel. However, the specific requirements

for achieving LPD communication and resulting achievable performance have not been analyzed
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prior to this work. We quantified the conditions for existence and maintenance of an LPD channel

by proving that the LPD communication is subject to a square root law in that the number of

LPD bits that can be transmitted in n channel uses is O(
√
n).

There are a number of avenues for future research. The key efficiency and, specifically, LPD

communication with a secret linear in the message length is an open theoretical research problem.

Practical network settings and the implications of the square root law on the LPD transmission of

packets under additional constraints such as delay should be analyzed. The impact of dynamism

in the network should also be examined, as well as more realistic scenarios that include channel

artifacts such as fading and interference from other nodes. One may be able to improve LPD

communication by employing nodes that perform friendly jamming. Eventually, we would like

to answer this fundamental question: is it possible to establish and maintain a “shadow” wireless

network in the presence of both active and passive wardens?

APPENDIX

A. Using an O(
√
n log n)-bit secret

Here we demonstrate how Alice and Bob can construct a binary coding scheme that, on

average, requires an O(
√
n log n)-bit secret. This is done in two stages. First, Alice and Bob

randomly select the symbol periods that they will use for their transmission by flipping a biased

coin n times, with probability of heads τ to be assigned later. The ith symbol period is selected

if the ith flip is heads. Denote the number of selected symbol periods by η and note that E [η] =

τn. Alice and Bob then use the best public binary codebook with codewords of length η on

these selected η symbol periods. They also generate and share a random binary vector k where

pK(k) =
∏η

i=1 pK(ki) with pK(0) = pK(1) = 1
2
. Alice XORs k and the binary representation

of the codeword c(Wk). The symbol location selection is independent of both the symbol and

the channel noise. When Alice is transmitting a codeword, the distribution of each of Willie’s
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observations is Ps = (1− τ)N (0, σ2
w) + τ

2
(N (−a, σ2

w) +N (a, σ2
w)) and, thus,

D(Pw‖Ps) =

∫ ∞
−∞

e
− x2

2σ2w

√
2πσw

ln
e
− x2

2σ2w /
√

2πσw

(1−τ)e
− x2

2σ2w√
2πσw

+ τ
2

(
e
− (x+a)2

2σ2w√
2πσw

+ e
− (x−a)2

2σ2w√
2πσw

)dx (21)

There is no closed-form expression for (21), but we can upper-bound it using Lemma 1. The

Taylor series expansion with respect to a around a = 0 can be done using Lemma 2, with

conditions for Lemmas 1 and 2 proven similarly as in Theorem 1.2. This yields the following

bound:

VT (Pnw,Pns ) ≤ τa2

2σ2
w

√
n

2
(22)

The only difference in (22) from (11) is τ in the numerator. Thus, if Alice sets the product τa2 ≤
cf(n)√

n
, with c and f(n) as previously defined, she limits the performance of Willie’s detector.

This product is the average symbol power used by Alice. Now fix a and set τ = O(1/
√
n).

Since, on average, τn symbol periods are selected, it takes (again, on average) O(
√
n) positive

integers to enumerate the selected symbols. There are n total symbols, and, thus, it takes at most

log(n) bits to represent each selected symbol location and O(
√
n log n) bits to represent all the

locations of selected symbols. Also, the average length of the secret binary vector k is O(
√
n)

bits. Thus, on average, Alice and Bob need to share O(
√
n log n) secret bits for Alice to reliably

transmit O(
√
n) bits in n LPD channel uses employing this coding scheme.

B. D(Pw‖Ps) in the proof of Theorem 1.2 meets the conditions of Lemmas 1 and 2

Re-arranging the terms of (10) results in the following expression:

D(Pw‖Ps) =
a2

2σ2
w

−
∫ ∞
−∞

e
− x2

2σ2w

√
2πσw

ln cosh

(
ax

σ2
w

)
dx (23)

where cosh(x) = ex+e−x

2
is the hyperbolic cosine function. Since a2

2σ2
w

is clearly continuous and

differentiable with respect to a, we focus on the integral in (23), specifically on its integrand:

K(x, a) =
e
− x2

2σ2w

√
2πσw

ln cosh

(
ax

σ2
w

)
(24)
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Due to the peak power constraint, 0 ≤ a ≤
√
b. Also, ln cosh(x) ≤ |x| since ln

(
ex+e−x

2

)
−|x| =

ln
(

1+e−2|x|

2

)
≤ 0. Therefore, g(x) =

√
b|x|e

− x2

2σ2w√
2πσ3

w
≥ |K(x, a)|, in other words, g(x) dominates

K(x, a). g(x) is integrable since
∫∞
−∞ g(x)dx =

√
2b
πσ2

w
<∞.

The derivatives of K(x, a) with respect to a can be written in the following form:

odd i :
∂iK(x, a)

∂ai
=

e
− x2

2σ2w

√
2πσw

xi

σ2i
w

tanh

(
ax

σ2
w

) (i−1)/2∑
k=1

ci,k sech2k

(
ax

σ2
w

)
(25)

even i :
∂iK(x, a)

∂ai
=

e
− x2

2σ2w

√
2πσw

xi

σ2i
w

i/2∑
k=1

ci,k sech2k

(
ax

σ2
w

)
(26)

where sech(x) = 2
ex+e−x

and tanh(x) = ex−e−x
ex+e−x

are the hyperbolic secant and tangent functions,

respectively, ci,k are constants, and the “empty” sum
∑0

k=1 ci,k = 1. The first six derivatives of

K(x, a) with respect to a are as follows:

∂K(x, a)

∂a
=

e
− x2

2σ2w

√
2πσw

x

σ2
w

tanh

(
ax

σ2
w

)
(27)

∂2K(x, a)

∂a2
=

e
− x2

2σ2w

√
2πσw

x2

σ4
w

sech2

(
ax

σ2
w

)
(28)

∂3K(x, a)

∂a3
= − e

− x2

2σ2w

√
2πσw

2x3

σ6
w

sech2

(
ax

σ2
w

)
tanh

(
ax

σ2
w

)
(29)

∂4K(x, a)

∂a4
=

e
− x2

2σ2w

√
2πσw

2x4

σ8
w

(
2 sech2

(
ax

σ2
w

)
− 3 sech4

(
ax

σ2
w

))
(30)

∂5K(x, a)

∂a5
=

e
− x2

2σ2w

√
2πσw

8x5 tanh
(
ax
σ2
w

)
σ10
w

(
3 sech4

(
ax

σ2
w

)
− sech2

(
ax

σ2
w

))
(31)

∂6K(x, a)

∂a6
=

e
− x2

2σ2w

√
2πσw

8x6

σ12
w

(
15 sech6

(
ax

σ2
w

)
− 15 sech4

(
ax

σ2
w

)
+ 2 sech2

(
ax

σ2
w

))
(32)

Clearly, K(x, a) and its derivatives are continuous, satisfying conditions 1 and 2 of Lemma 2.

Since −1 ≤ tanh(x) ≤ 1 and 0 ≤ sech(x) ≤ 1 for all real x, we can use the triangle inequality
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to show that
∣∣∣∂iK(x,a)

∂ai

∣∣∣ ≤ hi(x) where

hi(x) =
e
− x2

2σ2w

√
2πσw

|x|i

σ2i
w

bi/2c∑
k=1

|ci,k| (33)

with bxc denoting the largest integer y ≤ x. Therefore, the following relations show dominating

functions of the corresponding derivatives of K(x, a):∣∣∣∣∂K(x, a)

∂a

∣∣∣∣ ≤ h1(x) =
e
− x2

2σ2w

√
2πσw

|x|
σ2
w

(34)

∣∣∣∣∂2K(x, a)

∂a2

∣∣∣∣ ≤ h2(x) =
e
− x2

2σ2w

√
2πσw

|x|2

σ4
w

(35)

∣∣∣∣∂3K(x, a)

∂a3

∣∣∣∣ ≤ h3(x) =
e
− x2

2σ2w

√
2πσw

2|x|3

σ6
w

(36)

∣∣∣∣∂4K(x, a)

∂a4

∣∣∣∣ ≤ h4(x) =
e
− x2

2σ2w

√
2πσw

10|x|4

σ8
w

(37)

∣∣∣∣∂5K(x, a)

∂a5

∣∣∣∣ ≤ h5(x) =
e
− x2

2σ2w

√
2πσw

32|x|5

σ10
w

(38)

∣∣∣∣∂6K(x, a)

∂a6

∣∣∣∣ ≤ h6(x) =
e
− x2

2σ2w

√
2πσw

256|x|6

σ12
w

(39)

Clearly, the above functions are integrable since they are found in the integrands of the central

absolute moments of the Gaussian distribution. Therefore, conditions 3 and 4 of Lemma 2 are

met by the integrand of (10) and the integrand’s derivatives.

The use of Lemma 1 is conditional on the integrals over x of K(x, a) and its derivatives in

(25) and (26) being continuous on a ∈ [0,
√
b]. To prove the continuity of a function f(x) on the

interval [u, v], it is sufficient to show that limx→x0 f(x) = f(x0) for all x0 ∈ [u, v]. We prove

that
∫∞
−∞K(x, a)dx is continuous as follows:

lim
a→a0

∫ ∞
−∞

K(x, a)dx =

∫ ∞
−∞

lim
a→a0

K(x, a)dx =

∫ ∞
−∞

K(x, a0)dx (40)
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where the first equality is due to the application of the dominated convergence theorem, which

is valid since we provide the function g(x) above that dominates K(x, a) and is integrable,

and the second equality is due to the continuity of K(x, a). Similar steps can be used to prove

the continuity of the integrals of the derivatives of K(x, a), with the ultimate result being the

satisfaction of the continuity condition of Lemma 1.

C. Proof of the generalized version of Fact 1

Proof (Fact 4): Upon observing x, Willie’s hypothesis test selects either the null hypothesis

H0 or the alternate hypothesis H1. Denote by p0(x) = p(x|H0) and p1(x) = p(x|H1) the

probability density functions of x conditioned on either hypothesis H0 or H1 being true; p0(x)

and p1(x) are therefore the probability density functions of P0 and P1. Denote by p(H0|x) and

p(H1|x) the probabilities of hypotheses H0 and H0 being true conditioned on the observation x.

Since the optimal hypothesis test uses the maximum a posteriori probability rule, the probability

Pc of Willie’s optimal test being correct, averaged over all observations, is as follows:

Pc =

∫
X

max(p(H0|x), p(H1|x))p(x)dx (41)

=

∫
X

max(π0p0(x), π1p1(x))dx (42)

where X is the support of p0(x) and p1(x), and (42) follows from Bayes’ theorem. Let Pe =

1− Pc = 1−
∫
X max(π0p0(x), π1p1(x))dx denote the error probability of Willie’s optimal test.

Now, since max(a, b) = a+b+|a−b|
2

, Pe can be expressed as follows:

Pe = 1− 1

2

(
π0

∫
X
p0(x)dx+ π1

∫
X
p1(x)dx

)
− 1

2

∫
X
|π0p0(x)− π1p1(x)|dx (43)

=
1

2
− 1

2
‖π0p0(x)− π1p1(x)‖1 (44)

where (44) is due to the probability densities integrating to one over their supports in the first

two integrals of (43), π0 + π1 = 1, and the last integral in (43) being the L1 norm. We can
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lower-bound (44) using the triangle inequality for the L1 norm:

Pe ≥
1

2
− 1

2
(‖π0p0(x)− π0p1(x)‖1 + ‖π0p1(x)− π1p1(x)‖1) (45)

=
1

2
− |π0 − π1|

2
− π0

2
‖p0(x)− p1(x)‖1 (46)

where (46) follows from the L1 norm of a probability density function evaluating to one and

π0 > 0. If π1 > π0, the following application of the triangle inequality yields a tighter bound:

Pe ≥
1

2
− 1

2
(‖π1p1(x)− π1p0(x)‖1 + ‖π1p0(x)− π0p0(x)‖1) (47)

=
1

2
− |π0 − π1|

2
− π1

2
‖p0(x)− p1(x)‖1 (48)

By Definition 1, 1
2
‖p0(x)− p1(x)‖1 = VT (P0,P1). Since min(a, b) = a+b−|a−b|

2
, we can combine

(46) and (48) to yield

Pe ≥ min(π0, π1)−max(π0, π1)VT (P0,P1) (49)

which completes the proof.
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