
COMS6998-11: Homework 2

Akshay Krishnamurthy
akshay@cs.umass.edu
Due: Thursday, 4/21

Instructions: Turn in your homework to me by email by Thursday 4/21.

1. Data re-use in NPG. In this problem we will study one approach for reusing data in natural policy
gradient. To do this we will consider an importance sampling estimator that we will define below. We work in
the discounted tabular MDP setting M = (S,A, P,R, µ, γ) and consider the tabular softmax parametrization
for natural policy gradient. Assume that R : S ×A → ∆([0, 1]).

To start off, let us consider two softmax policies π1 and π2 related by

π2(a | s) = π1(a | s) · exp(c(s, a))∑
a′ π1(a | s) exp(c(s, a))

(1)

where c : S × A → R is some fixed function with sups,a |c(s, a)| ≤ c?. We estimate Qπ2(s, a) via geometric
resampling and taking actions according to π1, that is: we start with s0 = s, a0 = a, take actions via π1 and
stop at each time t with probability 1− γ. This means we stop immediately with probability 1− γ, and use
the immediate reward r0 ∼ R(s0, a0) below. Letting t? denote the stopping time, we form the estimate

Q̂π2(s, a) =

(
t?∏
t=1

π2(aτ | sτ )

π1(aτ | sτ )

)
rt?

1− γ

(Note that compared to the estimator we used in lecture, we have made two changes. First we are only using
the last reward rt? rather than the sum of the rewards, although we are scaling it up by 1/(1 − γ). Second,
we are importance weighting by the density ratio of the two policies along the way. Note that we are not
importance weighting with the 0th term, since we are trying to estimate Q(s0, a0), both policies will agree on
this. )

(a) First show that Q̂π2(s, a) is an unbiased estimator for Qπ2(s, a), that is E[Q̂π2(s, a)] = Qπ2(s, a).

(b) Next, show that for all s, a

exp(−2c?) ≤
π2(a | s)
π1(a | s)

≤ exp(2c?)

(c) Finally, provide high probability upper bounds on both t? and the range of the estimator. That is find
values tmax and Qmax (in terms of c? and γ) such that

Pr
(
t? ≥ tmax or Q̂π2(s, a) ≥ Qmax

)
≤ δ

While we will not work through the details, this importance weighting estimator can be used in combination
with NPG, since the NPG update takes a form similar to (1). Thus we can use the data collected from past
iterates, or alternatively, we can just collect data once every few iterates. However, there is a competing force
that prevents us from taking this to the extreme. If we collect data very infrequently, the iterates will be quite
far apart, so c? and hence Qmax will be large and we will have worse estimation error, since that degrades
with the range of the random variable (e.g., from Hoeffding’s inequality).
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2. Tabular RL with a generative model. While we studied some harder settings for learning in MDPs
in lecture, let us focus on a simpler setting here. This is called the “generative model” setting. There is
a discounted MDP M = (S,A, P,R, µ, γ), where P,R, µ are all unknown. For learning, we have access to
a generative model, Samp, that can be queried with a pair (s, a) ∈ S × A and, when queried, it returns a
sample (r, s′) where r ∼ R(s, a) and s′ ∼ P (s, a). In this problem, we will use this generative model to learn
a near-optimal policy for M .

(a) First prove the simulation lemma for discounted MDPs. Suppose we have two MDPsM1 = (S,A, P1, R1, µ, γ)
and M2 = (S,A, P2, R2, µ, γ) such that

∀(s, a) : ‖P1(s, a)− P2(s, a)‖TV ≤ ε, |Er∼R1(s,a)[r]− Er∼R2(s,a)[r]| ≤ ε.

Then for any policy π : S → ∆(A) we have

sup
s,a
|QπM1

(s, a)−QπM2
(s, a)| ≤ 2ε

(1− γ)2

Here recall that TV denotes the total variation distance, or 1/2 of the `1 norm. That is ‖P1(s, a) −
P2(s, a)‖TV = 1

2

∑
s′ |P1(s′|s, a) − P2(s′|s, a)|. Also we use QπM1

to denote the action-value function of
policy π in M1.

(b) Equipped with the simulation lemma, show that if we simply query Samp polynomially many times from

each (s, a), we can estimate an MDP approximation M̂ that satisfies the preconditions of the simulation
lemma with respect to the true MDP M .

(c) Explain then how to find a policy π̂ that is ε sub-optimal (with probability at least 1− δ). What is the
total sample complexity of this approach?

Optional challenge question: can you get a better sample complexity?

3. Generative models and Linear MDPs. Now let us extend the above analysis to the Linear MDP setting.
We have a MDP M = (S,A, P,R, γ) and a feature map φ : S,A → Rd satisfying the Linear MDP property:

P (s′ | s, a) = 〈φ(s, a), µ(s′)〉 , Er∼R(s,a)[r] = 〈φ(s, a), θ?〉 . (2)

(You may assume the standard normalizations for linear MDPs, that is ‖φ(s, a)‖2 ≤ 1, ‖θ?‖2 ≤ 1 and
supg ‖

∫
µ(s)g(s)ds‖2 ≤

√
d.) As above, we have access to a generative model Samp that takes as input

s, a and produces a sample s′ ∼ P (s, a) and r ∼ R(s, a). Using this generative model, we would like to com-
pute a near-optimal policy. The twist is that we do not want the sample complexity scale with the number of
states or actions.

To do this, we will define a distribution D ∈ ∆(S×A) and we collect a dataset of n tuples the form (s, a, r, s′)
where (s, a) ∼ D and (r, s′) = Samp(s, a). Let Σ = ED[φ(s, a)φ(s, a)>] denote the feature covariance and
assume sups,a φ(s, a)>Σ−1φ(s, a) ≤ d (We will not prove this, but such a distribution always exists when the
features form a compact set).

In this problem, we define the Bellman backup operator T to map V-value functions to Q-value functions.
That is T : (S → [0, 1

1−γ ]) → (S × A → [0, 1
1−γ ]) and it is defined by T V : (s, a) 7→ E[r + γV (s′) | s, a].

Under our setup, for any fixed function V : S → [0, 1
1−γ ], we can estimate the bellman backup T V via linear

regression:

ŵ ← argmin
w

1

n

n∑
i=1

(〈w, φ(si, ai)〉 − ri − γV (s′i))
2

(T̂ V )(s, a) = 〈φ(s, a), ŵ〉

Here T̂ V is a function with the same type as a Q function, that is T̂ V : S×A → [0, 1
1−γ ]. Owing to the linear

MDP property, a concentration argument can be used to show that T̂ V and T V are close. For this problem,
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you can assume that, simultaneously for all functions of the form V (s) = maxa 〈φ(s, a), θ〉 with θ ∈ Rd, with
probability 1− δ we have

ED

[(
T̂ V (s, a)− T V (s, a)

)2]
≤ ∆ log(1/δ)

n

where ∆ depends polynomially on d and 1/(1− γ).

(a) Suppose we perform the iteration: (1) V (t) : s 7→ maxaQ
(t)(s, a), (2) Q(t+1) ← T̂ V (t), starting from

Q(1) = 0, for T iterations. Show that

∀(s, a) :
∣∣∣Q(T )(s, a)−Q?(s, a)

∣∣∣ ≤ 1

1− γ

√
d∆ log(1/δ)

n
+

γT

1− γ

(b) Use the above inequality to derive a sub-optimality bound for the policy π̂ : s 7→ argmaxaQ
(T )(s, a).

That is, obtain an upper bound on J(π?)− J(π̂).

4. Bellman rank. Show that the feature learning linear MDP setting has V-type Bellman rank d. In this
setting, we have a class of feature maps Φ : (S × A) → Rd and we assume that there exists a map φ? ∈ Φ
such that both rewards and transitions are linear in φ? (that is, they satisfy (2)). From here we define the
class of Q-functions as {(s, a) 7→ 〈θ, φ(s, a)〉 : θ ∈ Rd, φ ∈ Φ}, which is the set of all linear functions on top of
all features.
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