
Lecture 11: Structural conditions for nonlinear function approximation

Akshay Krishnamurthy
akshay@cs.umass.edu

April 11, 2022

In the last few lecture, we focused on linear function approximation and found that the question of statistical
efficiency is quite subtle. In particular, we require some structural conditions beyond simply realizability of the
optimal value function to obtain efficient algorithms. While the linear setting is a good place to start, of course
we would like to understand what can be done with more general non-linear functions. Since the linear setting is a
special case, we will still require structural conditions here. In this lecture we will cover some conditions that allow
us to use non-linear classes.

1 Review of the linear Bellman complete setting

The best place to start is from an algorithmic perspective. Here it is worthwhile to review the algorithm we studied
for the linear Bellman complete setting, which we will see can be substantially generalized. The reason to start with
this algorithm is that the “global optimism” approach is much more flexible then the “local optimism” approach,
since demanding pointwise optimism places quite strong constraints on the function class. But global optimism is
much easier to achieve.

As usual, we have a finite horizon MDPM = (S,A, P,R, µ) with episode length H. We also have a feature map
φ : S ×A → Rd and consider using a linear function to fit Q?h. To this end we assume realizability, or the existence
of θ?0:H such that Q?h(s, a) = 〈θ?h, φ(s, a)〉 and we assume bellman completeness. Recall that we define the bellman
backup operator as

T : (S ×A → R)→ (S ×A → R) via (T f)(s, a) = E[r + max
a′

f(s′, a′) | s, a].

With linear functions we sometimes change the domain of the bellman operator to be d-dimensional vectors, i.e.,
(T θ)(s, a) = E[r+ maxa′ 〈θ, φ(s′, a′)〉 | s, a]. Bellman completeness requires that for any θ there exists a θ̄ such that
∀(s, a) :

〈
θ̄, φ(s, a)

〉
= (T θ)(s, a).

The algorithm we studied for the linear Bellman complete setting maintained “nested” confidence ellipsoids
and used global optimism to choose the policy to deploy in each episode. Specifically, at iteration t the algorithm
computes the following:

Rt−1
h (θ, θ̃) :=

t−1∑
i=1

(〈
φ(sih, a

i
h), θ

〉
− rih −max

a

〈
φ(sih+1, a), θ̃

〉)2

+ λ‖θ‖22,

Ballt :=

{
(θ0, . . . , θH) : θH = 0,∀h : Rt−1

h (θh, θh+1) ≤ min
θ
Rt−1
h (θ, θh+1) + β2

}
~θt ← argmax

(θ0,...,θH)∈Ballt
Es0 max

a
〈φ(s0, a), θ0〉 .

Then we deploy the greedy policy with respect to ~θt to collect an episode. This is a version space algorithm that
keeps plausible hypotheses ~θ that satisfy the constraints imposed by the confidence ball. These constraints can be
interpreted as demanding that ~θ is “consistent” on the states and actions previously visited. Indeed, we can show

~θ ∈ Ballt ⇒ ∀h :

t−1∑
i=1

(〈
θh, φ(sih, a

i
h)
〉
− (T θh+1)(sih, a

i
h)
)2 ≤ O(β2).

1

This connects to the regret analysis via the regret decomposition for globally optimistic algorithms.

Lemma 1 (Global optimistic regret decomposition). Suppose we have a Q function (Q0, . . . , QH−1) such that

Es0 maxaQ0(s0, a) ≥ Es0 maxaQ
?
0(s0, a) and we set π to be the greedy policy with respect to ~Q. Then

J(π?)− J(π) ≤
H−1∑
h=0

E(s,a)∼dπh [Qh(s, a)− (T Qh+1)(s, a)] .

Now the regret of π is upper bounded by its “inconsistency” on its own visitation distribution, while the version
space eliminates functions that are inconsistent on previously seen state-action pairs. Therefore, if the policy that
we deploy (which is in the version space) has high regret, intuitively it must find a new and very different constraint.
Finally, the linear structure allows us to use the elliptical potential to argue that the latter cannot happen too often.

2 Generalizing to non-linear functions

In fact, most of the above argument does not require linear functions at all. The only place where linearity is used
is when we apply the elliptial potential lemma to bound the number of times we can find new constraints. But
there could be many other ways to do this. For example, maybe the dynamics have a “bottleneck” structure where
the distribution over (sh, ah) we obtain when deploying a policy π is very simple (or lies in a low-dimensional set).
If this were true, perhaps we can argue that once we visit enough of these distributions we will eliminate all of the
inconsistent functions, without appealing to linear function approximation. We will see many examples shortly, but
let us first describe how to generalize the above algorithm.

The new algorithm will have essentially three differences. First, we’ll generalize to an abstract function class
F : S×A → R. Second we’ll avoid the completeness assumption which puts us at risk of facing the double sampling
issue. We’ll avoid this by collecting many samples and using averaging. Finally we’ll measure the Bellman errors
in a slightly different way.

The key quantity is the average Bellman error of function ~f witnessed by policy π. This is defined as

Eh(π, ~f) := E
[
fh(sh, ah)− rh −max

a′
fh+1(sh+1, a

′) | sh ∼ dπh, ah = πf (sh)
]

= E [fh(sh, ah)− (T fh+1)(sh, ah) | sh ∼ dπh, ah = πf (sh)]

This is the analog of the constraints we used in the linear setting but there are two important differences. First
we are not imposing constraints on single state-action pairs, but rather on distributions induced by the policies.
Second the action ah here is chosen by the (policy induced by the) Q-function we are trying to evaluate, rather
than the policy we used to roll in. This provides a decoupling effect that is important in some applications but not
fundamental to the broader approach.

Given policy π we can easily estimate Eh(π, ~f) for all ~f ∈ F simultaneously by collecting a single dataset of
n samples where we roll-in to sh ∼ π and take ah uniformly at random. Given the dataset {(sih, aih, rih, sih+1)}ni=1

sampled from this process we form the estimator using importance weighting:

Êh(π, ~f) :=
1

n

n∑
i=1

1{aih = πf (sih)}
1/A

·
(
fh(sih, a

i
h)− rih −max

a′
fh+1(sih+1, a

′)
)

A elementary concentration argument using Bernstein’s inequality shows that with probability at least 1− δ

∀f ∈ F :
∣∣∣Êh(π, ~f)− Eh(π, ~f)

∣∣∣ ≤ O(√A log(|F|/δ)
n

)

The idea is to construct the confidence ball by asking that
∣∣∣Êh(πi, ~f)

∣∣∣ ≤ ε for each previous policy πi that we have

deployed. This is justified by the Bellman consistency intuition and the fact that Eh(π, ~Q?) = 0 for all policies π.
We summarize the algorithm in Algorithm 2.1. The idea is very similar to the linear Bellman complete case.

In each iteration we select the globally optimistic value function ~f t subject to the confidence set constraints. We

2

Algorithm 2.1 Bilin-UCB

Input: function class F , accuracy and failure parameters (ε, δ).
Define F0 ← F .
for t = 1, . . . , T do

Let ~f t = argmax~f∈Ft−1
Es0 [maxa f0(s0, a)] (Estimate from samples if necessary)

for each h ∈ [H] do

Collect nest samples {(sih, aih, rih, sih+1)}nest
i=1 where sih ∼ dπ

t

h , a
i
h ∼ Unif(A) and form Êh(πt, ~f) for each f ∈ F .

end for
Define Ft as

Ft =

{
~f ∈ F : ∀h :

t∑
i=1

(Êh(πi, ~f))2 ≤ β2

}

end for
Output the best πt found, according to estimates of J(πt).

will use the greedy policy induced by ~f t, which we call πt for data collection in this iteration. Then we collect
data for each time step h to estimate Eh(πt, ~f) and we incorporate this new constraint into our confidence set. The
confidence set should be viewed as the analog of Ballt from the previous algorithm.

This algorithm is analyzed assuming realizability, meaning that ~Q? ∈ F . The analysis is based on the following
steps. First a concentration analysis for Ê results in a choice for β in terms of the number of iterations T to ensure
that Q? ∈ Ft−1 for all t. This also results in a bound on the “constraint violations” for any candidate ~f ∈ Ft−1.

Then we use the regret decomposition to argue that either ~f t is near optimal or it provides a significantly novel
constraint. The key will be to identify a new potential function to show that the latter cannot happen too often.

Let us describe the concentration part in more detail. First observe that the algorithm uses O(nestHT) episodes,
where both nest and T will be set later. Taking a union bound over all h ∈ [H] and t ∈ [T] we know that

∀h, t, ~f :
∣∣∣Êh(πt, ~f)− Eh(πt, ~f)

∣∣∣ ≤ O
√A log(|F|HT/δ)

nest

 =: εest

We want to use this bound to set β. Since we know that Eh(πt, ~Q?) = 0 we can be sure that

T∑
i=1

(Êh(πi, ~Q?))2 ≤
T∑
i=1

(Êh(πi, ~Q?)− Eh(πi, ~Q?))2 ≤ Tε2est

So if we set β2 = Tε2est we can be sure that ~Q? ∈ Ft for all t ∈ [T]. We also know that for any ~f ∈ F t−1 we have

t−1∑
i=1

(Eh(πi, ~f))2 ≤
t−1∑
i=1

2(Êh(πi, ~f))2 + 2tε2est ≤ 4β2 (1)

By the optimistic regret decomposition, if ~f t is εopt sub-optimal, then we have

εopt = J(π?)− J(πt) ≤
∑
h

E
s,a∼dπth

[fh(s, a)− (T fh+1)(s, a)] =
∑
h

Eh(πt, ~f t) (2)

This implies that there must exist some h for which

(Eh(πt, ~f t))2 ≥ ε2opt/
√
H (3)

Now we can more clearly see why πt is providing a significantly new constraint. Since ~f t ∈ Ft−1 we know that

Eh(πi, ~f t) is small for all previous policies πi, by (1). On the other hand, (3) shows that if πt is highly suboptimal,

then Eh(πt, ~f t) must be large. So πt must be providing us with new information. The question is how long can we
continue to acquire new information?

3

3 Structural conditions

In general we can acquire new information for an exponentially long time. But in many more-structured settings,
this is not the case. To capture these favorable conditions, we now introduce the main structural assumption.

Definition 2 (Bellman rank). Let F be given and let Π be the induced policy class, Π = {πf : ~f ∈ F}. For each

h we assume there exists embedding functions wh : Π → Rd and vh(~f) : F → Rd such that the average Bellman

error factorizes as Eh(π, ~f) =
〈
wh(π), vh(~f)

〉
. Here d is the Bellman rank of the problem. We also assume that

‖wh(π)‖2 ≤W and ‖vh(~f)‖2 ≤ V , for normalization.

Many interesting models admit low Bellman rank. However, note that although we are assuming some linear
structure in the problem, this is much more general than linear function approximation. Here the structure is not
directly on the class F , but rather on how the class interacts with the MDP. Before we turn to the examples let us
finish the analysis of the algorithm. As we have linear structure, it is natural to use the elliptical potential.

Lemma 3. Let x1, . . . , xT be a sequence of vectors with ‖xt‖2 ≤ B and define Σ0 = λI, Σt = Σt−1 + xtx
>
t . Then

T∑
t=1

min(1, x>t Σ−1
t−1xt) ≤ d log

(
1 +

TB2

dλ

)
To finish the proof, we write (1) and (2) in terms of the Bellman rank embeddings. Fix λ > 0 and let Σ0,h = λI

and Σt,h = Σt−1,h + wh(πt)wh(πt)> Then summing up the bound from the elliptical potential over h gives∑
h

∑
t

min(1, wh(πt)>Σ−1
t−1,hwh(πt)) ≤ Hd log

(
1 + TW 2/(dλ)

)
Since all the terms are positive, this implies that there exists a t such that:

∀h : min(1, wh(πt)>Σ−1
t−1,hwh(πt)) ≤ Hd

T
· log

(
1 + TW 2/(dλ)

)
If T is large enough that the RHS is strictly less than 1, we can drop the min on the LHS. Under this condition,
we will show that policy πt is near optimal. Indeed, we know that

J(π?)− J(πt) ≤
∑
h

Eh(πt, f t) =
∑
h

〈
wh(πt), vh(f t)

〉
≤
∑
h

‖wh(πt)‖Σ−1
t−1,h

· ‖vh(f t)‖Σt−1,h

We just bounded the first term and the second term can be bounded using the version space constraint in (1)

‖vh(f t)‖2Σt−1,h
≤ λV 2 +

t−1∑
i=0

〈
wh(πi), vh(f t)

〉2
= λV 2 +

i−1∑
i=0

(Eh(πi, f t))2 ≤ λV 2 + 4β2

Putting everything together, we have shown that there exists a t such that

J(π?)− J(πt) ≤ H
√
Hd

T
· log(1 + TW 2/(dλ)) ·

√
λV 2 +

4TA log(|F|TH/δ)
nest

.

Theorem 4. Consider any problem with Bellman rank d and suppose that ~Q? ∈ F . Set:

λ =
TA log(|F|TH/δ)

nestV 2
, T ≥ Hd log(1 + TW 2/(dλ)), nest ≥

H3dA log(|F|TH/δ) log(1 + TW 2/(dλ))

ε2

Then with probability at least 1− δ, Bilin-UCB outputs a policy π̂ satisfying J(π?)− J(π̂) ≤ ε while using at most
O(HTnest) samples.

4

4 Examples, generalizations, history

The Bellman rank can be small even in problems with high-dimensional/complex observations and even when F is
an arbitrary set of functions (satisfying realizability). We can think of the embedding property as capturing two
things simultaneously: whether F supports extrapolation (like linear functions), or whether there are not to many
distinct roll-in distributions dπh. We have seen the first feature in the linear Bellman complete setting and you
should verify for yourself that the Bellman rank is d. The next example highlights the other property.

Block MDPs. A block MDP is a problem with high dimensional inputs but where the dynamics are governed
by a finite latent state space Z. Specifically, there is a latent dynamics operator P : Z × A → ∆(Z) and an
emission operator q : Z → ∆(S) and a trajectory is (z0, s0, a0, r0, z1, s1, a1, r1, . . .) where the latent states z0:H−1

are unobserved. In this setting we may want to use non-linear function approximation but we can use the “bottleneck
structure” of the dynamics to argue that we cannot find too many constraints. Specifically, for a Q-function ~f and
a policy π we can write

Eh(π, ~f) = E sh∼π,
ah∼πf

[fh(sh, ah)− (T fh+1)(sh, ah)] =
∑
z

Pr[zh = z | π] · Esh∼q(zh),
ah∼πf

[fh(sh, ah)− (T fh+1)(sh, ah)].

(It is important that ah ∼ πf here, since otherwise the bellman error may not decouple across latent states.) With

this derivation we take wh(π) ∈ R|Z| to have entries [wh(π)]z = Pr[zh = z | π] and we take [vh(~f)]z to be the average

Bellman error for ~f from latent state z (the second term above). The calculation shows that all roll-in distributions
can be concisely described in terms of the latent states. Intuitively, the algorithm measures coverage over the latent
states rather than the observations, which allows us to explore efficiently. This verifies that the Bellman rank of
the block MDP is at most |Z| and allows for efficient algorithm as long as F satisfies realizability.

Other examples. All of the models we have derived upper bounds for so far have small Bellman rank: tabular
MDPs have rank |S|, linear MDPs have rank d, linear Bellman complete has rank d (but for the latter two the
above algorithm, as stated pays for the number of actions, which we saw is unnecessary). In the homework, you
will also show that the linear MDP has rank d even if the features are not known in advance, a setting that that
may be a nice theoretical framework for studying representation learning in RL. Beyond this, many other examples
have been documented in the literature, but the Block MDP may be the best illustration of how nonlinear function
approximation may be possible.

History and generalizations. The Bellman rank as we have defined it was originally developed by Jiang et
al. (2017) who provided a different algorithm, called OLIVE, to demonstrate tractability. The intuition for the
algorithm is the same, but the proof uses a different potential function argument that is based on the concept of
“deep cuts” in the convex programming literature. While they documented many models with low Bellman rank
(according to the definition above), the subsequent years saw the development of several models that do not exactly
fit into the definition above. However we found that the definition, algorithm, and analysis can be modified slightly
to accommodate essentially all of these models.

All of these modifications/generalizations are captured in the paper of Du et al. (2021), who propose the
“Bilinear class” framework and develop essentially the algorithm we presented here. One key generalization is the
introduction of a “loss function” which upper bounds the on-policy Bellman error E(πf , ~f) and factorizes as in the
Bellman rank definition. This loss function takes the place of the average Bellman error that we estimate. There
is also a technique for removing the dependence on the number of actions in the linear MDP, based on using a
different “one-step” policy in lieu of randomizing uniformly. With these generalizations, the framework captures
almost all models that are known to be statistically tractable. One notable exception is the deterministic setting
with linear Q? that we saw in the last lecture.

5

	Review of the linear Bellman complete setting
	Generalizing to non-linear functions
	Structural conditions
	Examples, generalizations, history

