
Lecture 2: Online Learning and Multi-armed Bandits

Akshay Krishnamurthy
akshay@cs.umass.edu

February 1, 2022

1 Introduction

Recap on generalization. In the last lecture, we studied concentration inequalities and saw a basic uniform
convergence result. The main algorithmic principle here was empirical risk minimization. The result showed that
given labeled data and a function class F we could competes with the best predictor in the class.

One salient feature of our result, which we did not discuss last week, is that there are essentially no restrictions
on the complexity of the instance space X , which could be images, text, DNA sequences, or anything else. The
sample complexity, or convergence rate, has nothing to do with how complicated X is, and this means that we can
still learn well even though we haven’t seen the vast majority of the instances. So this demonstrates that in the
supervised learning setting, we can actually generalize in the sense that we discussed in the introduction.

While the complexity of X is irrelevant, the complexity of the function class F appears prominently in the
bound. This is more desirable since it allows us to encode our domain knowledge or capture inductive biases when
designing the class F . However, one thing to note it is that if you (a) you know nothing about your problem, and
(b) you want to compete with the globally optimal function, then you might need to choose F to be all functions
from X → Y. Observe that in this case log |F| � |X |, so we will pay for the complexity of the instance space. So
there is no free lunch, but the bound above gives us some more flexibility.

A new capability: exploration As we discussed, in addition to generalizing across inputs, RL agents also have
to explore their environment, so that they can collect useful information to learn. Exploration, and reinforcement
learning more broadly, is a natural sequential process, so we first need to understand how to make predictions in a
sequential or online manner. Studying online learning is not strictly necessary for us, but it will showcase what are
known as version space algorithms in a simple setting, and we will see these algorithms in future lectures. After
online learning, we can turn to make sequential predictions while exploring the environment. Here we’ll see two
algorithmic techniques: importance weighting and optimism.

2 Online Learning

Online learning, which involves making predictions in a sequential manner, is a vibrant research area with many
beautiful results. While the sequential nature is a natural connection to reinforcement learning, it is practically
relevant in time-series prediction and elsewhere. As motivation, consider the following example:

Example 1. Suppose we would like to make weather forecasts. Let us assume that we are only interested in
predicting {rain, no rain} on each day, so we are making binary decisions. Every night we make a prediction about
the next day (perhaps based on whatever information we have available), and the next day we experience the weather
so we can verify our prediction. Let’s say we’d like to predict well over the course of the year.

This task is fundamentally different from the supervised learning problem we saw in the last lecture. Indeed,
here there is no training data at all. Instead, on every example (day), we must make a prediction without seeing
the label, and only afterwards is the true label revealed to us, allowing us to update our model. So in some sense,
every example is first a test example and then a training example. Another important difference is that modeling
the days as iid would be quite unrealistic, since the weather changes dramatically with the seasons.

1

Formalism. Online learning provides a framework for designing algorithms suitable for such problems. We have
all of the same ingredients as in offline supervised learning: there is an instance space X , a label space Y, a loss
function ` : Y ×Y → R and a function class F : X → Y. Here, we often referred to the function class as “experts.”
We play a T round game with an adversary as follows. At each round t ∈ [T]:

1. Adversary chooses (xt, yt) based on all information in the past. Adversary reveals xt to the learner.

2. Learner makes a prediction ŷt.

3. Adversary reveals yt and learner incurs loss `(ŷt, yt).

Naturally, we would like the learner to incur low loss, so we will try to bound the cumulative loss
∑

t `(ŷt, yt). In
the most challenging setting, we do not place any restrictions on the adversary whatsoever. It can choose (xt, yt)
however it likes based on all information in the past.

Mistake bound setting. In the simpler setting called the mistake bound model, we typically consider binary
classification, meaning that Y = {−1,+1} and the loss function is `(y, y′) = 1{y 6= y′}, and we will constrain the
adversary to ensure that one of the experts f? ∈ F incurs 0 loss in total. Since we know that one of our experts in
F incurs zero loss, it is quite natural to eliminate any expert that has made a mistake so far. Such algorithms are
called version space algorithms. So this will be our “learning rule” and what remains to decide is how should we
make predictions. For this, it turns out that the majority vote will be quite effective. This algorithm is the Halving
algorithm. Start with F0 = F and for each t:

1. Receive xt.

2. Predict ŷt = argmaxr∈Y |{f ∈ Ft−1 : f(xt) = r}|.

3. Receive label yt and upate Ft = {f ∈ Ft−1 : f(xt) = yt}.

Theorem 1. In the mistake bound model, the halving algorithm incurs total loss
∑

t `(ŷt, yt) ≤ log2(|F|).

Proof. The proof uses a “potential function” argument, where we track |Ft|. By assumption, we have |Ft| ≥ 1
(since we will never eliminate f?), and |Ft| ≤ |F1| = |F|. The main observation is that, since we predict by the
majority vote, every time we make a mistake we must eliminate at least 1/2 of the surviving functions. So we get

1 ≤ |FT | ≤ |FT−1|2−1{ŷT 6=yT } ≤ |F0|2−
∑

t `(ŷt,yt) = |F|2−
∑

t `(ŷt,yt).

Taking logarithms of this equation proves the theorem.

General setting. In the general setting, we should not assume that one expert is perfect, since this is quite a
strong assumption that is unlikely to hold in practice. Instead, similar to what we saw in supervised learning, we
want to compete with the best expert/predictor in our class. This is formalized by minimizing the notion of regret :

RegretT :=
∑
t=1

`(ŷt, yt)−min
f∈F

T∑
t=1

`(f(xt), yt)

This is quite similar to what we tried to control in the offline setting, except remember that now we are making no
assumptions on the data sequence (xt, yt). So instead of competing with the best predictor on the distribution, we
say that we are competing with the best predictor in hindsight. The goal is to obtain regret that scales sublinearly
with T , this is referred to as no-regret. The ideas is that o(T) regret demonstrates that, if the game is long enough,
we can in fact compete with the best predictor in hindsight.

There are two key principles for regret minimization. The first is related to the version space approach we saw
in the Halving algorithm: we want to keep track of which experts are doing well and which experts are doing poorly.
However we want to do this in a softer manner, since an expert that starts out doing poorly can later turn out to
be the best one. So we should not actually do strict eliminations, but rather something much softer.

The second observation is that, rather than taking a majority vote, we need to randomize our predictions. If
we don’t randomize, then the all powerful adversary knows what we are going to predict so it can force us to make

2

a mistake. On the other hand as long as our class contains the constant predictors f− : x 7→ −1 and f+ : x 7→ +1,
one of these two will make at most T/2 mistakes so we will have Ω(T) regret.

Since we are going to randomize, we can reformulate the problem slightly, which will be useful for the bandit
setting. We eliminate both the instance and label spaces altogether and we number the experts 1, . . . , N . Instead,
the adversary simply chooses a loss vector `t ∈ [0, 1]N and the learner chooses a distribution pt ∈ ∆(N) over the
experts. Then the learner incurs loss 〈pt, `t〉, while expert i incurs loss `t(i). Regret is measured as

RegretT :=

T∑
t=1

〈pt, `t〉 − min
i∈[N]

T∑
t=1

`t(i)

Exponential Weights. Let us instantiate a soft elimination procecdure with randomized predictions. This
procedure has many names, including “Exponential Weights” and “Hedge.” We start with weights w1 = (1, . . . , 1) ∈
RN and we have a learning rate η. Then for each t:

1. Set pt ∝ wt so pt(i) = wt(i)/Zt where Zt =
∑

j wt(j). Predict with pt.

2. Observe `t, incur loss 〈pt, `t〉. Update wt+1(i)← wt(i) · exp(−η`t(i)).
Theorem 2. Assume that `t ∈ [0, 1]N for all t. Then for any η ∈ (0, 1] we have

RegretT ≤
η

2

T∑
t=1

〈
pt, `

2
t

〉
+

log(N)

η
. (1)

With η =
√

2 log(N)/T , we obtain RegretT ≤
√

2T log(N).

Proof. As in the proof for the Halving algorithm, we use a potential function argument. Here we track log(Zt) the
log-sum of the weights of the experts. First observe that log(Z1) = log(N) and that for any expert i ∈ [N] we have

log(ZT+1) = log
∑
j

exp(−η
∑
t

`t(j)) ≥ −η
∑
t

`t(i)

The key step is to relate the change in potential to the learner’s loss

log
Zt+1

Zt
= log

(∑
i

wt(i) exp(−η`t(i))
Zt

)
= log

(∑
i

pt(i) exp(−η`t(i))

)

≤ log

(
1− η 〈pt, `t〉+

η2

2

〈
pt, `

2
t

〉)
≤ −η 〈pt, `t〉+

η2

2

〈
pt, `

2
t

〉
Here we used two analytical inequalities. The first is the upper bound e−x ≤ 1−x+x2/2, which is obtain by Taylor’s
expansion since the third order term is negative. We apply this to exp(−η`t(i)). The second is that log(1 + x) ≤ x
for x > −1. This is where we obtain the restrictions on `t and η.

Now, we use a telescoping argument

−η
∑
t

`t(i) ≤ logZT+1 =

T∑
t=1

log
Zt+1

Zt
+ logZ1 ≤ −η

∑
t

〈pt, `t〉+
η2

2

∑
t

〈
pt, `

2
t

〉
+ log(N)

Re-arranging this inequality and dividing by η proves the theorem.

3 Adversarial Multi-armed bandits

Now that we have some basic understanding of how to make predictions in a sequential manner, let us connect
this setting back to reinforcement learning and introduce the challenge of exploration. In RL, we typically call the
experts “actions” and number them {1, . . . , A}. Then, the loss vector `t associates a loss to each action. The main
difference is that our agent should choose a single action, execute it in the environment, and then receive a loss for
just that action. So instead of observing the entire loss vector, we should only observe the loss for the action that
we select. This protocol is formalized via the multi-armed bandit framework. We still play a T round game where
in each round t:

3

1. Nature/Adversary chooses loss vector `t ∈ [0, 1]A

2. Learner chooses action at ∈ [A]

3. Learner suffers loss `t(at) and only observes `t(at).

We still measure performance via the notion of regret. But now, the main challenge is that we do not see the losses
for the actions that we don’t play. So we must explore to learn about the performance of the other actions.

Exp3. The exponential weights algorithm can almost fit into the multi-armed bandit protocol by sampling at ∼ pt
on each round. In some sense, Exponential Weights already does some exploration, since it ensures pt(a) > 0 for
each a, t. This is a good sanity check since we won’t entirely starve any action. However, we might play some
actions with exponentially small probability, which could be bad.

To avoid this, we have to change the update rule. Note that we can’t implement the original update rule anyway
since we don’t observe the losses for the actions we didn’t play. And replacing them with, say zero, amounts to
running Exponential Weights on a completely different loss sequence, so the regret bound doesn’t make much sense.

We will ultimately replace the losses we didn’t see with zero, but the key is to do this in an unbiased manner.
For this, we introduce the concept of importance weighting. If at round t we play at ∼ pt and observe `t(at), we
construct the loss estimate

˜̀
t(a) = `t(at)

1{at = a}
pt(a)

Intuitively, if we choose some action with low probability, but it incurs large loss, we inflate this dramatically to
account for all the times we didn’t play this action. Importance weighting satisfies a few critical properties:

Lemma 3. The importance weighted estimates satisfy:

Eat∼pt
[˜̀t(a)] = `t(a), Eat∼pt

[˜̀2t (a)] = `t(a)2/pt(a), Ea∼pt
[1/pt(a)] = A

Proof. The calculations are fairly straightforward:

Eat∼pt
[˜̀t(a)] =

∑
at

pt(at)`t(at)
1{at = a}
pt(a)

= `t(a)

Eat∼pt [
˜̀2
t (a)] =

∑
at

pt(at)`
2
t (at)

1{at = a}
p2t (a)

= `t(a)2/pt(a)

Ea∼pt
[1/pt(a)] =

∑
a

pt(a)/pt(a) = A

The Exp3 algorithm simply runs Exponential Weights using importance weighted loss estimates. By the above
lemma, we immediately obtain the following theorem.

Theorem 4. If `t ∈ [0, 1]A and η =
√

log(A)
AT , the Exp3 algorithm has an expected regret bound of

E[RegretT] ≤
√

2TA log(A)

Proof. If we think of the adversary as deploying the losses ˜̀
t then the Exponential weights regret bound is∑

t

〈
pt, ˜̀

t

〉
−
∑
t

˜̀
t(a

?) ≤ η

2

∑
t

〈
pt, ˜̀2

t

〉
+

log(A)

η

Here a? ∈ argmina

∑
t `t(a) is the best action on the original sequence. (This requires one small observation in the

Exponential Weights proof, which is that even though ˜̀
t may not be bounded, we do have

〈
pt, ˜̀

t

〉
bounded, so we

can still use the inequality log(1 + x) ≤ x.)
Taking expectation (over the random actions a1:T) and using our bound from the previous lemma, we have

E

[∑
t

`t(at)− `t(a?)

]
≤ log(A)

η
+
η

2
E

[∑
t

∑
a

pt(a)
`t(a)2

pt(a)

]
≤ log(A)

η
+
η

2
·AT

With our choice of η we obtain the result.

4

	Introduction
	Online Learning
	Adversarial Multi-armed bandits

