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1. Importance weighting and policy gradient. For the first part, we have to combine to arguments we
have seen previously: that “on policy” roll-outs with geometric stopping is unbiased, and that importance
weighting is unbiased. The first part is shown by the following calculation (throughout we are conditioning
on s0 = s, a0 = a):
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For the second part, let’s consider just one of the terms above and expand the expectation over trajectories
τt = (s0, a0, s1, a1, . . . , sT , aT ). Here we let r(s, a) denote the expected reward from (s, a).
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∑
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Putting this together with the previously display, we obtain the result.

For the second part, the calculation is somewhat straightforward:

π2(a | s)
π1(a | s)

=
exp(c(s, a))∑

a′ π1(a′ | s) exp(c(s, a′))
≤ exp(c?)

exp(−c?)
∑
a′ π1(a′ | s)

≤ exp(2c?).

A similar calculation applies for the other direction.

Finally for the third part, we focus on finding a deterministic quantity tmax such that t? < tmax with high

probability. If this holds (formally, conditioned on t? ≤ tmax), we know that Q̂π2(s, a) ≤ exp(2tmaxc
?)

1−γ =: Qmax

with probability 1, so we will have proved the result.

By a direct calculation

Pr[t? ≥ T ] =

∞∑
τ=T

(1− γ)γτ = γT (1− γ)

∞∑
τ=0

γτ = γT

Therefore tmax ≥ log(1/δ)/ log(1/γ) suffices.
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2. Tabular RL with generative models. Consider some policy π and some (s, a) pair. (For notation only
we consider π to be deterministic but this is not essential.) First note that since rewards are in [0, 1] we have
that QπM2

∈ [0, 1
1−γ ]. Then

|QπM1
(s, a)−QπM2

(s, a)| = |ER1(s,a)[r] + γEs′∼P1(s,a)Q
π
M1

(s′, π(s′))− ER2(s,a)[r]− γEs′∼P2(s,a)Q
π
M2

(s′, π(s′))|
≤ |ER1(s,a)[r]− ER2(s,a)[r]|+ γ|Es′∼P1(s,a)[Q

π
M1

(s′, π(s′))]− Es′∼P2(s,a)[Q
π
M2

(s′, π(s′))]|
≤ ε+ γ

∣∣EP1(s,a)[Q
π
M1

(s′, π(s′))−QπM2
(s′, π(s′))]

∣∣+ γ
∣∣(EP1(s,a) − EP2(s,a))Q

π
M2

(s′, π(s′))
∣∣

≤ ε+
γε

1− γ
+ γ

∣∣EP1(s,a)[Q
π
M1

(s′, π(s′))−QπM2
(s′, π(s′))]

∣∣
≤ ε+

γε
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+ γmax

s,a

∣∣QπM1
(s, a)−QπM2

(s, a)
∣∣ .

Here, the first equality uses the definitions of the Q functions. In the second we use the triangle inequality to
separate the immediate reward from the next-step value functions. In the third line we use the assumed bound
on the reward differences and we also add and subtract a “cross term” quantity: Es′∼P1(s,a)Q

π
M2

(s′, π(s′)).
This leads us to a one step error term as well as a recursive term. The one step term is bounded via
|(EP − EQ)(f(x))| ≤ supx |f(x)| · ‖P −Q‖TV.

Now let s̄, ā be the state-action pair that maximize the difference (s̄, ā) = argmaxs,a |QπM1
(s, a)−QπM2

(s, a)|.
Then we have just showed that

|QπM1
(s̄, ā)−QπM2

(s̄, ā)| ≤ ε+
γε

1− γ
+ γ

∣∣QπM1
(s̄, ā)−QπM2

(s̄, ā)
∣∣ .

We can re-arrange this to obtain a bound for all state-action pairs.

|QπM1
(s, a)−QπM2

(s, a)| ≤ |QπM1
(s̄, ā)−QπM2

(s̄, ā)| ≤ ε

1− γ
+

γε

(1− γ)2
≤ 2ε

(1− γ)2
.

For the second part, consider a single (s, a) pair and obtain n samples {(ri, s′i)}ni=1 from the sampling oracle.
Then by Hoeffding’s inequality the empirical reward R̄(s, a) = 1

n

∑n
i=1 ri satisfies (w.p. 1− δ)

∣∣R̄(s, a)− ER(s,a)[r]
∣∣ .√ log(1/δ)

n
.

Meanwhile, by Bernstein’s inequality the empirical transition probability P̂ (s′ | s, a) = 1
n

∑n
i=1 1{s′i = s′}

satisfies ∣∣∣P̂ (s′ | s, a)− P (s′ | s, a)
∣∣∣ .√P (s′ | s, a) log(1/δ)

n
+

log(1/δ)

n
.

Therefore, taking a union bound over all choices of s′ we have

‖P̂ (s, a)− P (s, a)‖TV ≤
1

2

∑
s′

∣∣∣P̂ (s′ | s, a)− P (s′ | s, a)
∣∣∣

.
∑
s′

(√
P (s′ | s, a) log(S/δ)

n
+

log(S/δ)

n

)

.

√
S log(S/δ)

n
+
S log(S/δ)

n

With a union bound the above argument holds simultaneously for all SA pairs. Thus if we set n =
O(S log(SA/δ)/ε2) we have uniform approximation, using O(S2A log(SA/δ)/ε2) samples in total.

If we find the optimal policy in the approximate MDP M̂ , by an analysis similar to that for ERM, we have

JM (π?) ≤ JM̂ (π?) +
2ε

(1− γ)2
≤ JM̂ (π̂) +

2ε

(1− γ)2

≤ JM (π?) +
4ε

(1− γ)2
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Thus to obtain suboptimality ε in total, we require

O

(
S2A log(SA/δ)

(1− γ)4ε2

)
samples in total.

3. Generative models for linear MDPs. We use a recursive argument, similar to the proof of the simulation
lemma: ∣∣∣Q(T )(s, a)−Q?(s, a)

∣∣∣ ≤ ∣∣∣ ̂T V (T−1)(s, a)− T V (T−1)(s, a)
∣∣∣+
∣∣∣T V (T−1)(s, a)−Q?(s, a)

∣∣∣
Using the linear MDP property, there exists a w̄ such that T V (T−1)(s, a) = 〈φ(s, a), w̄〉, while we constructed

the empirical backup to satisfy ̂T V (T−1)(s, a) = 〈φ(s, a), ŵ〉. Introducing the covariance matrix, we have∣∣∣ ̂T V (T−1)(s, a)− T V (T−1)(s, a)
∣∣∣ = |〈φ(s, a), w̄ − ŵ〉| ≤ ‖φ(s, a)‖Σ−1 · ‖w̄ − ŵ‖Σ

≤
√
d ·
√

ED
[
( ̂T V (T−1)(s, a)− T V (T−1)(s, a))2

]
≤
√
d∆ log(1/δ)

n
.

This takes care of the first term. The second term has a recursive form∣∣∣T V (T−1)(s, a)−Q?(s, a)
∣∣∣ = γ

∣∣∣Es′∼P (s,a)

[
V (T−1)(s′)− V ?(s′)

]∣∣∣
Recall that V (T−1)(s′) = maxa′ Q

(T−1)(s′, a′) while V ?(s′) = maxa′ Q
?(s′, a′). We would like to obtain a

difference in the two Q-functions on the same state-action pair as this will allow us to recurse the argument. For
this we introduce the policy π̃(s) = argmaxa max{Q(T−1)(s, a), Q?(s, a)}. This policy leads to the inequality∣∣∣V (T−1)(s′)− V ?(s′)

∣∣∣ =
∣∣∣max
a′

Q(T−1)(s′, a′)−max
a′

Q?(s′, a′)
∣∣∣ ≤ ∣∣∣Q(T−1)(s′, π̃(s′))−Q?(s′, π̃(s′))

∣∣∣
To see why this is true, suppose that π̃(s′) is the greedy action w.r.t., Q(T−1)(s′, ·). Then

Q(T−1)(s′, π̃(s′)) ≥ Q?(s′, π?(s′)) ≥ Q?(s′, π̃(s′)),

as desired. A similar argument holds in the other case. Therefore,

γ
∣∣∣Es′∼P (s,a)

[
V (T−1)(s′)− V ?(s′)

]∣∣∣ ≤ γ · sup
s,a

∣∣∣Q(T−1)(s, a)−Q?(s, a)
∣∣∣

Putting things together, we have

sup
s,a
|Q(T )(s, a)−Q?(s, a)| ≤

√
d∆ log(1/δ)

n
+ γ sup

s,a
|Q(T−1)(s, a)−Q?(s, a)|

We can apply the same argument on the last term on the right hand side and unrolling this gives

sup
s,a
|Q(T )(s, a)−Q?(s, a)| ≤

T∑
t=0

γt
√
d∆ log(1/δ)

n
+

γT

1− γ
≤ 1

1− γ

√
d∆ log(1/δ)

n
+

γT

1− γ
.

The final term uses the trivial bound that |Q(1) −Q?| ≤ 1
1−γ simply because Q?(s, a) ∈ [0, 1/(1− γ)].

For the second part, let the right hand side of the bound in part (a) be εQ. Then

J(π?)− J(π̂) = Es0Q
?(s0, π

?(s0))−Qπ̂(s0, π̂(s0))

= Es0Q
?(s0, π

?(s0))−Q?(s0, π̂(s0)) +Q?(s0, π̂(s0))−Qπ̂(s0, π̂(s0))

≤ Es0Q
?(s0, π

?(s0))−Q(T )(s0, π
?(s0)) +Q(T )(s0, π̂(s0))−Q?(s0, π̂(s0)) +Q?(s0, π̂(s0))−Qπ̂(s0, π̂(s0))

≤ 2εQ + Es0Q
?(s0, π̂(s0))−Qπ̂(s0, π̂(s0))
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Here the main inequality uses the fact that π̂ is greedy with respect to Q(T ), so Q(T )(s, π̂(s)) ≥ Q(T )(s, π?(s)).
Now, we may unroll the last term here since Q?(s0, π̂(s0)) = r(s0, π̂(s0))+γEs1∼P (s0,π̂(s0))Q

?(s1, π
?(s1)) while

Qπ̂(s0, π̂(s0)) = r(s0, π̂(s0)) + γEs1∼P (s0,π̂(s0))Q
π̂(s1, π̂(s1)). This gives

Es0Q
?(s0, π̂(s0))−Qπ̂(s0, π̂(s0)) = γEs1∼dπ̂1Q

?(s1, π
?(s1))−Qπ̂(s1, π̂(s1)),

which has the same form as what we started with. Thus by unrolling, we obtain the bound:

J(π?)− J(π̂) ≤ 2εQ
1− γ

4. Bellman rank. The key calculation is that in a linear MDP, the Bellman backup of any function g : S → R
is linear in the true features φ?. To see this, consider some policy π and note that

Esh∼dπhg(sh) = Esh−1,ah−1∼dπh−1

∫
P (sh | sh−1, ah−1)g(sh)dsh

= Esh−1,ah−1∼dπh−1

∫
〈φ?(sh−1, ah−1), µ?(sh)〉 g(sh)dsh

=

〈
Esh−1,ah−1∼dπh−1

φ?(sh−1, ah−1),

∫
µ?(sh)g(sh)dsh

〉
This immediately shows that the Bellman error Eh(π, f) factorizes, since we can take g in the above derivation
to be g : sh 7→ Eah∼πf (sh)[(f − T f)(sh, ah)], which is only a function of the state sh. Then

Eh(π, f) = Esh∼dπhEah∼πf (sh) [(f − T f)(sh, ah)] = Esh∼dπh [g(sh)]

=

〈
Esh−1,ah−1∼dπh−1

φ?(sh−1, ah−1),

∫
µ?(sh)g(sh)dsh

〉
Thus, we can take wh(π) = Esh−1,ah−1∼dπh−1

φ?(sh−1, ah−1) and we can take vh(f) =
∫
µ?(sh)Ea∼πf (sh)[(f −

T f)(sh, ah)]dsh and see that the Bellman rank is d. Note that these embeddings also satisfy reasonable
normalization conditions, since we typically assume ‖φ?h‖2 is bounded, and it is natural to assume that both
f and T f are bounded as well.
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