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1. Importance weighting and policy gradient. For the first part, we have to combine to arguments we
have seen previously: that “on policy” roll-outs with geometric stopping is unbiased, and that importance
weighting is unbiased. The first part is shown by the following calculation (throughout we are conditioning
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For the second part, let’s consider just one of the terms above and expand the expectation over trajectories
7t = (80, a0, 81,0a1,...,ST,ar). Here we let r(s,a) denote the expected reward from (s, a).
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Putting this together with the previously display, we obtain the result.

For the second part, the calculation is somewhat straightforward:

m(a|s) exp(c(s,a)) < exp(cx) < exp(2c”).
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A similar calculation applies for the other direction.

Finally for the third part, we focus on finding a deterministic quantity tmnax such that t, < tp.x with high
probability. If this holds (formally, conditioned on t, < tyax), we know that Q™ (s,a) < % : Qmax
with probability 1, so we will have proved the result.

By a direct calculation
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Therefore tyax > log(1/6)/log(1/7) suffices.



2. Tabular RL with generative models. Consider some policy 7 and some (s, a) pair. (For notation only
we consider 7 to be deterministic but this is not essential.) First note that since rewards are in [0, 1] we have
that Q7,, € [0, ﬁ]. Then
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Here, the first equality uses the definitions of the Q functions. In the second we use the triangle inequality to
separate the immediate reward from the next-step value functions. In the third line we use the assumed bound
on the reward differences and we also add and subtract a “cross term” quantity: Ey.p,(s,0)@%y, (5" 7(s"))-
This leads us to a one step error term as well as a recursive term. The one step term is bounded via
[(Ep — EQ)(f(2))] < sup, | f(2)[ - [P = Qv

Now let 5,a be the state-action pair that maximize the difference (5,a) = argmax, , |Q7,, (s,a) — Q7 (s, a)l.
Then we have just showed that

Q54 (5.) = QT (5,0)| < e+ 17— +7]Q5 (5,8) ~ QT (59)]

We can re-arrange this to obtain a bound for all state-action pairs.
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For the second part, consider a single (s, a) pair and obtain n samples {(r;, s})};-; from the sampling oracle.
Then by Hoeffding’s inequality the empirical reward R(s,a) = %Z?:l r; satisfies (w.p. 1 —9)

[R(s,0) ~ Enu ] < yf UL

Meanwhile, by Bernstein’s inequality the empirical transition probability ]5(5’ | s,a) = %Z?zl 1{s; = s'}
satisfies

P(s' | s,a) — P(s | s,a)‘ S \/P(S/ | S’Z)log(l/é) + log(i/&.

Therefore, taking a union bound over all choices of s’ we have
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With a union bound the above argument holds simultaneously for all SA pairs. Thus if we set n =
O(Slog(SA/68)/e?) we have uniform approximation, using O(S?Alog(SA/§)/e?) samples in total.

If we find the optimal policy in the approximate MDP M , by an analysis similar to that for ERM, we have

Ju(m*) < JM(W*)JF (13757)2 < JM(ﬁ) + (13767)2
N 4e
< Ju(m*) + =2



Thus to obtain suboptimality € in total, we require

(St

samples in total.

. Generative models for linear MDPs. We use a recursive argument, similar to the proof of the simulation
lemma:

’Q(T)(s,a) —Q*(s, a)‘ < )Tﬁl)(&a) — TV(T_I)(s,a)’ + ‘TV(T_D(S, a) — Q*(s,a)

Using the linear MDP property, there exists a @ such that 7V (T~ (s, a) = (¢(s, a), w), while we constructed

the empirical backup to satisfy TV (T=1(s,a) = (é(s,a), ). Introducing the covariance matrix, we have

TVID(s,0) = TV (s,0)| = (605, @), @ = 0)] < 65, 0)lls- - [ — bl
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This takes care of the first term. The second term has a recursive form
TVTD(5,0) = Q*(5,0)| = 7 [Ewapionn) [VT0() = V()|

Recall that VT~V (s") = max, Q7Y (s',a’) while V*(s') = max, Q*(s’,a’). We would like to obtain a
difference in the two Q-functions on the same state-action pair as this will allow us to recurse the argument. For
this we introduce the policy 7(s) = argmax, maX{Q(T_l)(s a), @*(s,a)}. This policy leads to the inequality
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To see why this is true, suppose that #(s) is the greedy action w.r.t., Q7= (s,-). Then
QU I(s,7(s) = Q*(s', 7 (s) = Q* (s, 7 (s")),

as desired. A similar argument holds in the other case. Therefore,

QT (s,a) — Q*(s,a)
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Putting things together, we have
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We can apply the same argument on the last term on the right hand side and unrolling this gives
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The final term uses the trivial bound that |Q() — Q*| < ﬁ simply because Q*(s,a) € [0,1/(1 —7)].

For the second part, let the right hand side of the bound in part (a) be eg. Then

J(7*) = J(7) = Es, Q" (50,7 (50)) — Q" (0,7 (s0))
= E4, Q" (50,7 (50)) — Q" (50, 7(50)) + Q" (0, 7(50)) — Q" (50, 7(s0))
< EsyQ" (50, (50)) — QT (50,7 (0)) + QT (50, 7 (50)) — Q" (50, 7(0)) + Q" (s0, 7 (50)) — Q™ (50,7 (50))
< 2eq + EyQ" (50, 7(50)) — Q" (50, 7(50))




Here the main inequality uses the fact that 7 is greedy with respect to Q(), so Q) (s, 7(s)) > Q™) (s, 7*(s)).
Now, we may unroll the last term here since Q*(so, 7(s0)) = 7(50, 7(50)) +VEs; ~P(s0,7(s0)) @* (51, 7*(51)) while
Q7 (50, 7(50)) = 7(50,7(50)) + VEs, ~P(s0,7(s0)) @7 (51, 7(51)). This gives

Eso Q" (50, 7(50)) — Q7 (50, 7(50)) = VEq, ar @ (51,7 (51)) — Q" (51,7 (s1)),
which has the same form as what we started with. Thus by unrolling, we obtain the bound:
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. Bellman rank. The key calculation is that in a linear MDP, the Bellman backup of any function g : § — R
is linear in the true features ¢*. To see this, consider some policy 7 and note that

Esunar9(sn) = Es,_1an_i~ag_, /P(Sh | sh—1,an—1)g(sn)dsn
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This immediately shows that the Bellman error &, (m, f) factorizes, since we can take g in the above derivation
to be g : sn = Eapmmp () [(f — Tf)(Sh,an)], which is only a function of the state s,. Then

En(m, f) = Bspmdz Baymrnp (o) [(F = T £)(Snyan)] = Esy ar [9(sn)]
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Thus, we can take wy(w) = Esh_l$ah_1~d;§71¢*(sh,1,ah,l) and we can take v, (f) = fu*(sh)EaNﬂf(sh)[(f —
T f)(sn,an)]dsy, and see that the Bellman rank is d. Note that these embeddings also satisfy reasonable

normalization conditions, since we typically assume || ¢} ||z is bounded, and it is natural to assume that both
f and T f are bounded as well.



