CMPSCI 311: Introduction to Algorithms Spring 2018

Discussion 10
4/26/2018 Names:

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Instructions. You will be randomly assigned groups to work on these problems in discussion section. List
your group members on your worksheet and turn it in at the end of class. Write first and last names. Each
group member should turn in their own paper.

1. Subset Sum. Recall the subset sum or knapsack problem, where you have a collection of items with
different positive weights and you want to find the subset of those weights that get as close as possible
to a target weight W without exceeding it.

You attempt to approximately solve this problem by sorting the weights and then adding weights in
order from heaviest to lightest, never exceeding W.

(a) What is the maximum amount of error that this approximation algorithm can have?

(b) Loosely speaking, when would this greedy approximation be faster to perform than the accurate
dynamic programming solution demonstrated in class?

2. Vertex Cover. You want to find the minimum number of vertexes needed to make a vertex cover in
a graph G. This can be solved using brute force as demonstrated in the algorithm below.

(a) What is the run time complexity of this algorithm?

(b) If NP != P, does there exist a polynomial time algorithm to solve this problem accurately?

(¢) Design an approximation algorithm that runs in polynomial time. Your algorithm should never
underestimate the size of the minimum vertex cover. Hint: One way of approaching this problem
is to generate a vertex cover.

10-1

Discussion 10 10-2

Algorithm 1 Brute-Force-Minimum-Vertex-Cover(G)

cover-size =0
while TRUE do
for vertex-set € Al1-Subsets (G.nodes) do
if |vertex-set| == cover-size then
uncovered-edge-count = 0
for edge € G.edges do
if —(edge.nodel € vertex-set) A =(edge.node2 € vertex-set) then
uncovered-edge-count = uncovered-edge-count + 1
end if
end for
if uncovered-edge-count == 0 then
return cover-size
end if
end if
end for
cover-size = cover-size + 1
end while

(d) Find a case where your approximation algorithm returns an inaccurate result.

3. Reduction Review.

(a) Prove that 3-COLORING <, SAT.

