
CMPSCI 311: Introduction to Algorithms Spring 2018

Discussion 5
3/9/2018 Name:

Instructions. You will form groups to work on these problems in discussion section. Please turn in your own
sheet in at the end of class.

1. Maximum Subsequence Sum. Find the MSS of -1, 7, -8, 7, -3, -3, 1, 6. Remember the MSS divide
and conquer algorithm from class:

if length(Arr) = 1 then
max(A[0], 0)

end if
mid = length(Arr)/2
L = MSS(Arr[0:mid])
R = MSS(Arr[mid:length(Arr)])
Set sum = 0, L′ = 0
for i = mid-1 down to 0 do

sum += Arr[i], L′ = max(L′, sum)
end for
Set sum = 0, R′ = 0
for i = mid-1 up to length(Arr-1) do

sum += Arr[i], R′ = max(L′, sum)
end for
return max(L,R,L′ + R′)

5-1

Discussion 5 5-2

2. General 1D Closest Pair

For this exercise, we will consider two algorithms, Monotonic-Number-Line-Closest-Distance and General-
Number-Line-Closest-Distance.

The median(a) algorithm returns the median. For an odd-sized a, median will return the value that
would be in the middle of the array if a was sorted. For an even-sized a, median will return the average
of the two elements that would be in the middle if a was sorted. Note that if all elements in a were
unique, it is ensured that the number of elements that are greater than the median will be equal to
the number of elements that are less than the median. For this exercise, median(a) takes Θ(n) time,
where n is the length of a.

The range(a, s, e) algorithm returns an array of all elements in array a that are between s and e.
range is inclusive of the lower bound s, but not inclusive of the upper bound e. For this exercise,
range(a, s, e) takes Θ(n) time, where n is the size of the output.

Algorithm 1 Monotonic-Number-Line-Closest-Distance(a, length)

result =∞
for i from 2 to length do
dif = a[i]− a[i− 1]
result = min(dif, result)

end for
return result

Algorithm 2 General-Number-Line-Closest-Distance(a)

mid = median(a)
low = range(a,−∞,mid)
high = range(a,mid,∞)
low-val = General-Number-Line-Closest-Distance(low)
high-val = General-Number-Line-Closest-Distance(high)
val = min(low-val,high-val)
result = val
low-boundary = range(low,median−val, mid). {Begin Refactoring on This Line}
for i ∈ low-boundary do

possible-closest = range(high, mid, median+val).
for j ∈possible-closest do

result = min(result, |i− j|)
end for

end for{Stop Refactoring on This Line}
return result.

Now you are given an array that is not sorted. General-Number-Line-Closest-Distance is closely
based on the closest-distance algorithm shown in lecture. Assume that the input array is a power of 2
in length.

(a) How many elements can be in possible-closest?

(b) Refactor the code marked in General-Number-Line-Closest-Distance. No for loops should be
needed in the refactored region.

Discussion 5 5-3

(c) What is the complexity of General-Number-Line-Closest-Distance? Did it change during
refactoring? If we sorted a and ran Monotonic-Number-Line-Closest-Distance, would we do
better or worse than running General-Number-Line-Closest-Distance?

(d) Design as efficient an algorithm as possible to find the greatest distance between any two elements
in the input array. What is the Θ complexity of this? How does it compare with sorting and
running your previous algorithm for finding the greatest distance?

