
CMPSCI 311: Introduction to Algorithms Spring 2018

Homework 2
Released 2/07/2018 Due 11:59pm 2/21/2018 in Gradescope

Instructions. You may work in groups, but you must individually write your solutions yourself. List your
collaborators on your submission.

If you are asked to design an algorithm as part of a homework problem, please provide: (a) the pseudocode
for the algorithm, (b) an explanation of the intuition for the algorithm, (c) a proof of correctness, (d) the
running time of your algorithm and (e) justification for your running time analysis.

There are four questions, each worth 25 points total.

Submission instructions. This assignment is by 11:59pm on 2/21/2018 in Gradescope. Please submit a
pdf file. You may submit a scanned handwritten document, but a typed submission is preferred. It will be
extremely helpful if in your submission, you start each question on a new page.

1. Graph short answer.

(a) K&T Ch3.Ex7. Claim: Let G be a graph on n nodes, where n is an even number. If every node
of G has degree at least n/2, then G is connected. Decide whether you think the claim is true or
false, and either give a proof of the claim or give a counterexample.

(b) K&T Ch3.Ex9. Let G = (V,E) be an n node undirected graph containing two nodes s and
t, such that the distance between s and t is strictly greater than n/2. Show that there must be
some node v, not equal to either s or t such that deleting v from G destroys all s − t paths. In
other words, the graph G′ obtained by deleting v contains no paths from s to t.

(c) Weighted Graphs. Suppose we have two weighted graphs G1 = (V,E,w) and G2 = (V,E,w′)
where w′(e) = w(e)+1 and w,w′ are the edge weights in the two graphs. The graphs are identical,
except that all the edges weights in G2 are one larger than the corresponding edge in G1. Suppose
that in G1, we have computed the shortest weighted path from some fixed node s ∈ V to some
other node t ∈ V . Call this path p. Is it always the case that p is the shortest s→ t path in G2?
If it is, then prove it, otherwise give a counterexample.

2. Directed Graphs. Given a directed acyclic graph G, give a linear time algorithm to determine if the
graph has a directed path that visits every vertex.

3. K&T Ch4.Ex3. You are consulting for a trucking company that does a large amount of business
shipping packages between New York and Boston. The volume is high enough that they have to send
a number of trucks each day between the two locations. Trucks have a fixed limit W on the maximum
amount of weight they are allowed to carry. Boxes arrive at the New York station one by one, and
each package i has a weight wi. The trucking station is quite small, so at most one truck can be at
the station at any time. Company policy requires that boxes are shipped in the order they arrive;
otherwise, a customer might get upset upon seeing a box that arrived after his make it to Boston
faster. At the moment, the company is using a simple greedy algorithm for packing: they pack boxes
in the order they arrive, and whenever the next box does not fit, they send the truck on its way.

But they wonder if they might be using too many trucks, and they want your opinion on whether the
situation can be improved. Here is how they are thinking. Maybe one could decrease the number of
trucks needed by sometimes sending off a truck that was less full, and in this way allow the next few
trucks to be better packed.

Prove that, for a given set of boxes with specified weights, the greedy algorithm currently in use actually
minimizes the number of trucks that are needed. Your proof should follow the type of analysis used in

2-1



Homework 2 2-2

the book for the Interval Scheduling Problem: it should establish the optimality of this greedy packing
algorithm by identifying a measure under which it stays ahead of all other solutions.

4. K&T Ch4.Ex14. You’re working with a group of security consultants who are helping to monitor
a large computer system. There’s particular interest in keeping track of processes that are labeled
”sensitive”. Each such process P has a designated start time and finish time, and it runs continuously
between these times; the consultants have a list of the planned start and finish times of all sensitive
processes that will be run that day.
As a simple first step, they’ve written a program called statusCheck that, when invoked, runs for
a few seconds and records various pieces of logging information about all sensitive processes running
on the system at that moment. (We’ll model each invocation of statusCheck as lasting for only this
single point in time.) What they’d like to do is to run statusCheck as few times as possible during
the day, but enough that for each sensitive process P , statusCheck is invoked at least once during the
execution of process P .

(a) Give an efficient algorithm that, given the start and finish times of all the sensitive processes, finds
a small a set of times as possible at which to invoke statusCheck, subject to the requirement
that statusCheck is invoked at least once during each sensitive process P .

(b) While you were designing your algorithm, the security consultants were engaging in a little back-
of-the-envelope reasoning. ”Suppose we can find a set of k sensitive processes with the property
that no two are ever running at the same time. Then clearly your algorithm will need to invoke
statusCheck at least k times: no one invocation of statusCheck can handle more than one of
these processes.”
This is true, of course, and after some further discussion you all begin wondering whether some-
thing stronger is true as well, a kind of converse to the above argument. Suppose that k∗ is the
largest value of k such that one can find a set of k sensitive processes with no two ever running
at the same time. Is it the case that there must be a set of k∗ times at which you can run
statusCheck so that some invocation occurs during the execution of each sensitive process? (In
other words, the kind of argument in the previous paragraph is really the only things forcing you
to need a lot of invocations of statusCheck.) Decide whether you think this claim is true or false,
and give a proof or counterexample.

5. (0 points). How long did it take you to complete this assignment?


