
CMPSCI 311: Introduction to Algorithms
Lecture 10: More Divide and Conquer

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: February 28, 2018

Integer Multiplication

Motivation: multiply two 30-digit integers?
153819617987625488624070712657

x 925421863832406144537293648227

I Multiply two 300-digit integers?

I Cannot do this in Java with built-in data types

I 64-bit unsigned integer can only represent integers up to ~20
digits (264 ≈ 1020)

Warm-Up: Addition

Input: two n-digit binary integers x and y
Goal: compute x+ y

Let’s do everything in base-10 instead of binary to make examples
more familiar.
Grade-school algorithm:

1854
+ 3242

5096

Running time? Θ(n)

Integer Multiplication Problem

Input: two n-digit base-10 integers x and y
Goal: compute xy
Can anyone think of an algorithm?

Grade-School Algorithm (Long Multiplication)

Example: n = 3

287
x 132

574

861
287

37884

287× 132 = (2× 287) + 10 · (3× 287) + 100 · (1× 287)

Running time? Θ(n2)
But xy has at most 2n digits. Can we do better?

Divide and Conquer

Idea: split x and y in half (assume n is a power of 2)

x = 3380︸ ︷︷ ︸
x1

2367︸ ︷︷ ︸
x0

y = 4508︸ ︷︷ ︸
y1

1854︸ ︷︷ ︸
y0

Then use distributive law

xy = (10n/2x1 + x0)× (10n/2y1 + y0)
= 10nx1y1 + 10n/2(x1y0 + x0y1) + x0y0

Have reduced the problem to multiplications of n/2-digit integers
and additions of n-digit numbers

Divide and Conquer: First Try

Recursive algorithm:

xy = 10nx1y1 + 10n/2(x1y0 + x0y1) + x0y0

Running time? Four multiplications of n/2 digit numbers plus three
additions of at most 2n-digit numbers

T (n) ≤ 4T
(n

2
)

+ cn

= O(nlog2 4)
= O(n2)

We did not beat the grade-school algorithm. :(

Better Divide and Conquer

Same starting point:

xy = 10nx1y1 + 10n/2(x1y0 + x0y1) + x0y0

Trick: use three multiplications to compute the following:

A = (x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0

B = x1y1

C = x0y0

Then
xy = 10nB + 10n/2(A−B − C) + C

Total: three multiplications of n/2-digit integers, six additions

Better Divide and Conquer

Total: three multiplications of n/2-digit integers, six additions of at
most 2n-digit integers

T (n) ≤ 3T
(n

2
)

+ cn

= O(nlog2 3)
≈ O(n1.59)

We beat long multiplication!

Idea can be generalized to be even faster (split x and y into k parts
instead of two)

Finding Minimum Distance between Points on a Plane

I Problem: Given n distinct points p1, . . . , pn ∈ R2, find

minimum distance between any two points = min
i 6=j

d(pi, pj)

d(p, q) =
√

(p[1]− q[1])2 + (p[2]− q[2])2

How long does naive algorithm take? O(n2)

We’ll do it in O(n logn) steps.

Minimum Distance Algorithm
I Divide points P with a vertical line into PL and PR where
|PL| = |PR| = n/2

I Recursively find minimum distance within PL and PR:

δL = min
p,q∈PL:p 6=q

d(p, q) δR = min
p,q∈PR:p 6=q

d(p, q)

I Compute δM = minp∈PL,q∈PR
d(p, q) and return

min(δL, δR, δM)

I If Step 3 takes Ω(n2) time, we get

T (n) ≤ 2T (n/2) + Ω(n2) =⇒ T (n) = Ω(n2)

I If we can do Step 3 in Θ(n) time, we get T (n) = O(n logn).

Making Step 3 Efficient
I Need to find min(δL, δR, δM) where δM = minp∈PL,q∈PR

d(p, q)

I Suppose that the dividing line is x = m and δ = min(δL, δR)

Making Step 3 Efficient

I Need to find min(δL, δR, δM) where δM = minp∈PL,q∈PR
d(p, q)

I Suppose that the dividing line is x = m and δ = min(δL, δR)

I Once we know δ, only need O(n) comparisons to find min(δ, δM)
I Only compare (p1, p2) ∈ PL, (q1, q2) ∈ PR if

m− δ < p1 ≤ q1 < m+ δ and |p2 − q2| < δ

I Each point p ∈ PL only gets compared with O(1) points in PR

I Need to identify the relevant comparisons in O(n) time
I Make two copies of points sorted by each coordinate

I Ensure both lists are passed to each recursion sorted

I Given sorted lists, it’s easy to find the relevant points

Merge step pseudocode

I Assume PL, PR sorted in increasing by second coordinate.
I Assume they only contain the points within δ of the boundary.

Lw = [], Rw =[], δM =∞
while PL.next(),PR.next()6= None do

if PL.next().y < PR.next().y then
Append next = PL.pop() to Lwindow;
Remove points in Lw, Rw with y-distance > δ from next
Compare distances between Lw, Rw, update δM .

else . Same thing but for PR.next()
end if

end while

I Fact. Lw, Rw always of O(1) size!
I Runtime. O(n logn).

