Integer Multiplication

CMPSCI 311: Introduction to Algorithms Motivation: multiply two 30-digit integers?

153819617987625488624070712657
x 925421863832406144537293648227

Lecture 10: More Divide and Conquer

Akshay Krishnamurthy

v

Multiply two 300-digit integers?

University of Massachusetts » Cannot do this in Java with built-in data types

v

64-bit unsigned integer can only represent integers up to ~20
digits (264 ~ 10%9)

Last Compiled: February 28, 2018

Warm-Up: Addition Integer Multiplication Problem

Input: two n-digit binary integers = and y
Goal: compute = +y

Let's do everything in base-10 instead of binary to make examples

more familiar. Input: two n-digit base-10 integers and y

. Goal: compute zy
Grade-school algorithm:
Can anyone think of an algorithm?
1854

+ 3242

Running time? O(n)

Grade-School Algorithm (Long Multiplication) Divide and Conquer

Example: n =3 . . .
Idea: split = and y in half (assume n is a power of 2)

287
x 132 r = 33802367
______ x1 xo
574 y = 4508 1854
861 Y1 Yo
287
________ Then use distributive law
37884 Ty = (1071/21,1 +~TO) ~ (10n/2y1 + yO)

= 10"z1y1 + 10™2(z1y0 + zoy1) + Toyo
287 x 132 = (2 x 287) + 10 - (3 x 287) 4+ 100 - (1 x 287)
Have reduced the problem to multiplications of n/2-digit integers
Running time? @(nQ) and additions of n-digit numbers

But zy has at most 2n digits. Can we do better?

Divide and Conquer: First Try

Recursive algorithm:

zy = 10"z1y1 + 102 (2190 + 2oy1) + 20yo

Running time? Four multiplications of n/2 digit numbers plus three
additions of at most 2n-digit numbers

We did not beat the grade-school algorithm. :(

Better Divide and Conquer

Same starting point:

zy = 10"z1y1 + 10™2 (2190 + 2oy1) + Tovo

Trick: use three multiplications to compute the following:

A = (z1+ z0)(y1 + yo) = 191 + 21Y0 + Toy1 + Toyo
B =z1y1
C = zoyo
Then
ry=10"B+10Y(A-B-C)+C

Total: three multiplications of n/2-digit integers, six additions

Better Divide and Conquer

Total: three multiplications of n/2-digit integers, six additions of at
most 2n-digit integers

We beat long multiplication!

Idea can be generalized to be even faster (split and y into k parts
instead of two)

Finding Minimum Distance between Points on a Plane

» Problem: Given n distinct points py,...,p, € R find

minimum distance between any two points = n;éir_l d(pi, p;j)
i#]

d(p.q) = \/(p[ll —q[1])? + (p[2] — ¢[2])?

How long does naive algorithm take? O(n?)

We'll do it in O(nlogn) steps.

Minimum Distance Algorithm

» Divide points P with a vertical line into P, and Pr where
|Pr| = |Pr|=n/2

» Recursively find minimum distance within P;, and Pg:

0= min d rp= min d(p,
o p,gEPL:p#q (p.4) r P,9€ Prip#q (p-q)

» Compute 0y = minyep, gepy d(p, ¢) and return
min(dr,dr, dnr)
> If Step 3 takes Q(n?) time, we get
T(n) < 2T(n/2) + Q(n?) = T(n) = Q(n?)
> If we can do Step 3 in ©(n) time, we get T'(n) = O(nlogn).

Making Step 3 Efficient
> Need to find min(d, 0, dar) where 0y = minyep; gepy d(p, q)

> Suppose that the dividing line is = m and ¢ = min(dr,)

[=4]

o

OFLs 25

@)

Making Step 3 Efficient

> Need to find min(dz, 0, dpr) where oy = mingep, qep, AP q)
> Suppose that the dividing line is = m and ¢ = min(dr,,dr)
» Once we know §, only need O(n) comparisons to find min(d, das)
» Only compare (p1,p2) € Pr, (q1,92) € Pg if
m—90<pr<q@g<m+dJ and |p2—q| <9
» Each point p € Py, only gets compared with O(1) points in Pr

> Need to identify the relevant comparisons in O(n) time

» Make two copies of points sorted by each coordinate
» Ensure both lists are passed to each recursion sorted

» Given sorted lists, it's easy to find the relevant points

Merge step pseudocode

» Assume P, Pg sorted in increasing by second coordinate.
» Assume they only contain the points within § of the boundary.

Lw =[], Rw =[], dpr = 00
while Py .next(),Pr.next()# None do
if Pr.next().y < Pg.next().y then
Append next = P,.pop() to Lwindow;
Remove points in Lw, Rw with y-distance > § from next
Compare distances between Lw, Rw, update §;;.
else > Same thing but for Pp.next()
end if
end while

» Fact. Lw, Rw always of O(1) size!
> Runtime. O(nlogn).

