
CMPSCI 311: Introduction to Algorithms
Lecture 11: Divide and Conquer III

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: March 6, 2018

Announcements

I Midterms graded
I Regrades?
I Solutions

I Homework 3 due wednesday
I No quiz tonight, yes discussion

Divide and Conquer Recap

I Given a problem of an input of size n,
I We generate (multiple) smaller instances of the problem
I We solve each of these smaller instances
I We use the solutions of the small instances to solve the

original problem.
I Suppose that the first and third steps can be performed in O(nα)

time. If there are q smaller instances generated, each of size n/k,
then the running time T (n) of the algorithm satisfies the
recurrence.

T (n) ≤ qT (n/k) + cnα

Divide and Conquer: Recurrences
I Suppose T (n) ≤ qT (n/2) + nα and T (1) ≤ 1. Then:

T (n) =

O(nα) if α > log2 q

O(nlog2 q) if α < log2 q

O(nα logn) if α = log2 q

I If you forget this formula just apply the “unrolling method“:

T (n) ≤ qT (n/2) + nα

≤ q(qT (n/4) + (n/2)α) + nα

≤ q(q(qT (n/8) + (n/4)α) + (n/2)α) + nα

≤ . . .

I Some example recurrence: T (n) ≤ T (n/2) + 1 and
T (n) ≤ 4T (n/2) + n

Divide and Conquer Algorithms

I Mergesort, Maximum Subsequence Sum

I Integer Multiplication

I Minimum distance

I Today: Counting inversions

Minimum Distance Recap

I Problem: Given n distinct points p1, . . . , pn ∈ R2, find

minimum distance between any two points = min
i 6=j

d(pi, pj)

d(p, q) =
√

(p[1]− q[1])2 + (p[2]− q[2])2

Naive algorithm takes O(n2)
But we can do O(n log2 n).

Minimum Distance Algorithm

I Divide points P with a vertical line into PL and PR where
|PL| = |PR| = n/2

I Recursively find minimum distance within PL and PR:

δL = min
p,q∈PL:p 6=q

d(p, q) δR = min
p,q∈PR:p 6=q

d(p, q)

I Compute δM = minp∈PL,q∈PR
d(p, q) and return

min(δL, δR, δM)

I Key idea: Can make step 3 O(n)-time.
I Proof requires “packing” argument.

Packing picture

Counting Inversions

I Consider a music recommendation system that works as follows
I When you join the service, they ask you to rank n songs
I Based on this ranking, they identify people with similar music

preferences
I How to measure “similar”in a large database? Count inversions

I My ranking is: 1, 2, . . . , n
I Your ranking is: a1, a2, . . . , an (ai ∈ {1, . . . , n})
I An inversion is a pair (i, j) where i < j but ai > aj .

A B C D E
me 1 2 3 4 5
you 1 3 4 2 5

I Inversions at B −D and C −D.

Counting Inversions

I Question: With list of length n, maximum number of inversions?
A B C D E

me 1 2 3 4 5
you 5 4 3 2 1

I Answer: Θ(n2)

I Brute force algorithm: Check all n(n− 1)/2 possibilities
I Θ(n2) runtime.

Counting Inversions: Divide and Conquer

I Divide: Split list in two halves L,R
I Recurse: Count inversions in each half
I Combine: Count inversions (`, r) with ` ∈ L, r ∈ R.
I Return the sum

1 5 4 8 10 2 6 9 3 7

I Challenge: How to do combine step quickly?

The combine step?

I Challenge: How to do combine step quickly?

I What if L and R were sorted?

1 5 4 8 10 2 6 9 3 7
1 5 4 8 10 2 6 9 3 7
1 4 5 8 10 2 3 6 7 9

I Combine step: 4 + 4 + 2 + 2 + 1 = 13.
I Can be done in O(n) time!

Inversions Divide and Conquer

I Divide: Split list in two halves L,R

I Recurse: Count inversions in each half and sort each half!

I Combine: Count inversions (`, r) with ` ∈ L, r ∈ R.
I Return the sum and sorted list.

I Notes
I Solve “harder” problem to make your life easier later.
I Important: Count inversions before sorting!

Pseudocode

if length(Arr) ≤ 2 then . Base case
run brute force algorithm return inversions and sorted list.

else
middle = length(Arr)/2 . Recursive Steps
(c`, L) = CountAndSort(Arr[0:middle])
(cr, R) = CountAndSort(Arr[middle:length(Arr)])
` = 1, r = 1, C = [], cm = 0 . Combine step
while ` ≤ n/2, r ≤ n/2 do

if L[`] < R[r] then
C.append(L[`]), ` = `+ 1

else
cm = cm + (n/2− `+ 1), C.append(R[r]), r = r + 1

end if
end while
Return (c` + cr + cm, C)

end if

Runtime

I Two recursive calls of size n/2

I Combine step takes O(n) times

I Recurrence:
T (n) ≤ 2T (n/2) + cn

I Runtime: O(n logn) – same as merge sort.

Divide and Conquer Wrap-up

I Intution: Solve subproblems and combine together
I Combine step can be tricky!

I Runtime analysis: Solving recurrence relations
I Other problems: Convolutions and FFT, Quicksort, Median find

Algorithm Design Techniques

I Greedy

I Divide and Conquer

I Dynamic Programming

I Network Flows

Divide and Conquer Recipe

I Devise recursive form for solution
I Implement recursion
Example. Compute sum of leaf weights for each internal node in
k-ary tree. (From practice exam)
I Recursive form w(v) = ∑

u child of v w(u).

Dynamic Programming Recipe

I Devise recursive form for solution
I Observe that recursive implementation involves redundant

computation. (Often exponential time)
I Design iterative algorithm that solves all subproblems without

redundancy.

Example (From HW1)

Problem. Given array A of length n, compute matrix B with
B[i, j] = A[i] + . . .+A[j] for i < j.

for i = 1, 2, . . . , n do
for j = i+ 1, . . . , n do

Add up A[i] +A[i+ 1] + ...+A[j]. Store in B[i, j].
end for

end for
Running time: Θ(n3).

Example (From HW1)

Problem. Compute B with B[i, j] = A[i] + . . .+A[j] for i < j.

B[i, j] =
{
B[i, j − 1] +A[j] if j > i

0 if j ≤ i

for i = 1, 2, . . . , n do
B[i, i] = 0
for j = i+ 1, . . . , n do

Add up B[i, j − 1] +A[j]. Store in B[i, j].
end for

end for
Running time: O(n2)

