CMPSCI 311: Introduction to Algorithms
Lecture 11: Divide and Conquer III
Akshay Krishnamurthy
University of Massachusetts

Announcements

- Midterms graded
- Regrades?
- Solutions
- Homework 3 due wednesday
- No quiz tonight, yes discussion

Divide and Conquer Recap

- Given a problem of an input of size n,
- We generate (multiple) smaller instances of the problem
- We solve each of these smaller instances
- We use the solutions of the small instances to solve the original problem.
- Suppose that the first and third steps can be performed in $O\left(n^{\alpha}\right)$ time. If there are q smaller instances generated, each of size n / k, then the running time $T(n)$ of the algorithm satisfies the recurrence.

$$
T(n) \leq q T(n / k)+c n^{\alpha}
$$

Divide and Conquer: Recurrences

- Suppose $T(n) \leq q T(n / 2)+n^{\alpha}$ and $T(1) \leq 1$. Then:

$$
T(n)= \begin{cases}O\left(n^{\alpha}\right) & \text { if } \alpha>\log _{2} q \\ O\left(n^{\log _{2} q}\right) & \text { if } \alpha<\log _{2} q \\ O\left(n^{\alpha} \log n\right) & \text { if } \alpha=\log _{2} q\end{cases}
$$

- If you forget this formula just apply the "unrolling method":

$$
\begin{aligned}
& \qquad \begin{aligned}
T(n) & \leq q T(n / 2)+n^{\alpha} \\
& \leq q\left(q T(n / 4)+(n / 2)^{\alpha}\right)+n^{\alpha} \\
& \leq q\left(q\left(q T(n / 8)+(n / 4)^{\alpha}\right)+(n / 2)^{\alpha}\right)+n^{\alpha} \\
& \leq \cdots
\end{aligned} \\
& \text { Some example recurrence: } T(n) \leq T(n / 2)+1 \text { and } \\
& T(n) \leq 4 T(n / 2)+n
\end{aligned}
$$

Minimum Distance Recap

- Problem: Given n distinct points $p_{1}, \ldots, p_{n} \in \mathbb{R}^{2}$, find minimum distance between any two points $=\min _{i \neq j} d\left(p_{i}, p_{j}\right)$

$$
d(p, q)=\sqrt{(p[1]-q[1])^{2}+(p[2]-q[2])^{2}}
$$

Naive algorithm takes $O\left(n^{2}\right)$
But we can do $O\left(n \log _{2} n\right)$.

Minimum Distance Algorithm

- Divide points P with a vertical line into P_{L} and P_{R} where $\left|P_{L}\right|=\left|P_{R}\right|=n / 2$
- Recursively find minimum distance within P_{L} and P_{R} :

$$
\delta_{L}=\min _{p, q \in P_{L}: p \neq q} d(p, q) \quad \delta_{R}=\min _{p, q \in P_{R}: p \neq q} d(p, q)
$$

- Compute $\delta_{M}=\min _{p \in P_{L}, q \in P_{R}} d(p, q)$ and return

$$
\min \left(\delta_{L}, \delta_{R}, \delta_{M}\right)
$$

- Key idea: Can make step $3 O(n)$-time.
- Proof requires "packing" argument.

Counting Inversions

- Consider a music recommendation system that works as follows
- When you join the service, they ask you to rank n songs
- Based on this ranking, they identify people with similar music preferences
- How to measure "similar"in a large database? Count inversions
- My ranking is: $1,2, \ldots, n$
- Your ranking is: $a_{1}, a_{2}, \ldots, a_{n}\left(a_{i} \in\{1, \ldots, n\}\right)$
- An inversion is a pair (i, j) where $i<j$ but $a_{i}>a_{j}$.

	A	B	C	D	E
me	1	2	3	4	5
you	1	3	4	2	5

- Inversions at $B-D$ and $C-D$.

Counting Inversions: Divide and Conquer

- Divide: Split list in two halves L, R
- Recurse: Count inversions in each half
- Combine: Count inversions (ℓ, r) with $\ell \in L, r \in R$.
- Return the sum

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 3 & 7 \\
\hline
\end{array}
$$

- Challenge: How to do combine step quickly?

Packing picture

Counting Inversions

- Question: With list of length n, maximum number of inversions?

	A	B	C	D	E
me	1	2	3	4	5
you	5	4	3	2	1

- Answer: $\Theta\left(n^{2}\right)$
- Brute force algorithm: Check all $n(n-1) / 2$ possibilities
- $\Theta\left(n^{2}\right)$ runtime

The combine step?

- Challenge: How to do combine step quickly?
- What if L and R were sorted?

| | 1 | 5 | 4 | 8 | 10 | 2 | 6 | 9 | 3 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 1 | 5 | 4 | 8 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Combine step: $4+4+2+2+1=13$.
- Can be done in $O(n)$ time!

Inversions Divide and Conquer

- Divide: Split list in two halves L, R
- Recurse: Count inversions in each half and sort each half!
- Combine: Count inversions (ℓ, r) with $\ell \in L, r \in R$.
- Return the sum and sorted list.
- Notes
- Solve "harder" problem to make your life easier later.
- Important: Count inversions before sorting!

Pseudocode

```
if length(Arr) \leq 2 then
                                    Base case
    run brute force algorithm return inversions and sorted list.
else
    middle = length(Arr)/2 }\quad\triangleright\mathrm{ Recursive Steps
    (c},L)=CountAndSort(Arr[0:middle]) 
    (cr, R) = CountAndSort(Arr[middle:length(Arr)])
    \ell=1,r=1,C=[], cm}=0\quad\triangleright Combine ste
    while \ell\leqn/2,r\leqn/2 do
        if L[\ell]<R[r] then
            C.append(L[\ell]),\ell=\ell+1
        else
            cm}=\mp@subsup{c}{m}{}+(n/2-\ell+1),\mathrm{ C.append( }R[r]),r=r+
        end if
    end while
    Return (c}\mp@subsup{c}{\ell}{}+\mp@subsup{c}{r}{}+\mp@subsup{c}{m}{},C
end if
```

Runtime

- Two recursive calls of size $n / 2$
- Combine step takes $O(n)$ times
- Recurrence: $\quad T(n) \leq 2 T(n / 2)+c n$
- Runtime: $O(n \log n)$ - same as merge sort.

Algorithm Design Techniques

- Greedy
- Divide and Conquer
- Dynamic Programming
- Network Flows

Divide and Conquer Wrap-up

- Intution: Solve subproblems and combine together
- Combine step can be tricky!
- Runtime analysis: Solving recurrence relations
- Other problems: Convolutions and FFT, Quicksort, Median find

Divide and Conquer Recipe

- Devise recursive form for solution
- Implement recursion

Example. Compute sum of leaf weights for each internal node in k-ary tree. (From practice exam)

- Recursive form $w(v)=\sum_{u \text { child of } v} w(u)$.

Dynamic Programming Recipe
- Devise recursive form for solution
- Observe that recursive implementation involves redundant
computation. (Often exponential time)
- Design iterative algorithm that solves all subproblems without
redundancy.

Example (From HW1)

Problem. Given array A of length n, compute matrix B with $B[i, j]=A[i]+\ldots+A[j]$ for $i<j$.
for $i=1,2, \ldots, n$ do
for $j=i+1, \ldots, n$ do
Add up $A[i]+A[i+1]+\ldots+A[j]$. Store in $B[i, j]$. end for
end for
Running time: $\Theta\left(n^{3}\right)$.

Example (From HW1)

Problem. Compute B with $B[i, j]=A[i]+\ldots+A[j]$ for $i<j$.

$$
B[i, j]=\left\{\begin{aligned}
B[i, j-1]+A[j] & \text { if } j>i \\
0 & \text { if } j \leq i
\end{aligned}\right.
$$

for $i=1,2, \ldots, n$ do
$B[i, i]=0$
for $j=i+1, \ldots, n$ do
Add up $B[i, j-1]+A[j]$. Store in $B[i, j]$.
end for
end for
Running time: $O\left(n^{2}\right)$

