	Announcements
CMPSCI 311: Introduction to Algorithms Lecture 12: Dynamic Programming 1 Akshay Krishnamurthy University of Massachusetts	 Homework 2 graded, regrades open Homework 4 out Wednesday
Algorithm Design Techniques	Dynamic Programming Schedule
 Greedy Divide and Conquer Dynamic Programming Network Flows 	 Today: Intro + Scheduling and Packing Thursday: Sequence Alignment + Biology problems 3/26: Graph problems 3/28: AI + Statistics problems
Divide and Conquer Recipe	Dynamic Programming Recipe
 Devise recursive form for solution Implement recursion Example Compute sum of leaf weights for each internal node in k-ary tree. (From practice exam) Recursive form w(v) = ∑_u child of v w(u). 	 Devise recursive form for solution Observe that recursive implementation involves redundant computation. (Often exponential time) Design iterative algorithm that solves all subproblems without redundancy.

Example (From HW1)	Example (From HW1)
Problem. Given array A of length n, compute matrix B with $B[i, j] = A[i] + \ldots + A[j]$ for $i < j$. for $i = 1, 2, \ldots, n$ do for $j = i + 1, \ldots, n$ do Add up $A[i] + A[i + 1] + \ldots + A[j]$. Store in $B[i, j]$. end for end for Running time: $\Theta(n^3)$.	Problem. Compute B with $B[i, j] = A[i] + \ldots + A[j]$ for $i < j$. $B[i, j] = \begin{cases} B[i, j-1] + A[j] & \text{if } j > i \\ 0 & \text{if } j \leq i \end{cases}$ for $i = 1, 2, \ldots, n$ do $B[i, i] = 0$ for $j = i + 1, \ldots, n$ do Add up $B[i, j-1] + A[j]$. Store in $B[i, j]$. end for end for Running time: $O(n^2)$
Weighted Interval Scheduling	Example
 Television scheduling problem: Given n shows with start time s_i and finish time f_i, watch as many shows as possible, with no overlap. A Twist: Each show has a value v_i and want a set of shows S, with no overlap and maximum value ∑_{i∈S} v_i. Greedy? 	s = (0, 1, 4, 3, 7, 8) f = (3, 5, 6, 9, 10, 11) v = (2, 4, 4, 7, 2, 1)
Recursive Form	Unrolling recurrence?
Order shows by finish time $f_1 \leq f_2, \ldots, \leq f_n$. Compute $p(i) = \max\{j : f_j \leq s_i\}$ for all i . • Suppose O is an optimal solution $(O = OPT(n))$. • If $n \in O$, then $O = OPT(p(n)) \cup \{n\}$. • If $n \notin O$ then $O = OPT(n-1)$. • Define $V = VAL(n)$ to be the optimal value. • If $n \in O$, then $V = VAL(p(n)) + v_n$. • If $n \notin O$, then $V = VAL(n-1)$. Recurrence $VAL(n) = \max\{VAL(p(n)) + v_n, VAL(n-1)\}$.	Val(j): If $j = 0$ return 0. Return max{Val $(p(j)) + v_j$, Val $(j - 1)$ }. Val (n) can require 2^n calls in the worst case. Only $n + 1$ values to compute \Rightarrow redundancy!

Memoized approach	Iterative approach
Idea. Save the output of recursive calls when you do them. Array $M[0n] = null$. M-Val(j): If $j = 0$ return 0. $M[j] \neq null$, return $M[j]$. $M[j] \leftarrow max\{v_j + M-Val(p(j)), M-Val(j-1)\}$. Return $M[j]$. Running time: $O(n)$.	Idea. Work from $0 \rightarrow n$ computing array entries only once. Array $M[0n] = null.$ I-All-Vals(n): M[0] = 0. for $j = 1,, n$ do $M[j] \leftarrow \max\{v_j + M[p(j)], M[j-1]\}.$ end for Running time: $O(n).$
Finding the optimum set	Weighted Interval Scheduling Takeaways
• Suppose O is an optimal solution $(O = OPT(n))$. • If $n \in O$, then $O = OPT(p(n)) \cup \{n\}$. • If $n \notin O$ then $O = OPT(n-1)$. Weighted-IS(n) Sort by finish time f_j , compute $p(j)$. $M \leftarrow I-All-Vals(n)$ # Compute M array $S \leftarrow \{\}, j = n$. while $j \neq 0$ do If $M[p(j)] + v_j \ge M[j-1]$, $S \leftarrow S \cup \{j\}$, $j \leftarrow p(j)$. Else $j \leftarrow j - 1$. end while Return S .	 Solution has recursive form. Can avoid unraveling the entire recursion. Dynamic Programming Table. The <i>M</i> array. Compute optimal value first, finding solution is easy after.