
CMPSCI 311: Introduction to Algorithms
Lecture 12: Dynamic Programming 1

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: March 19, 2018

Announcements

I Homework 2 graded, regrades open
I Homework 4 out Wednesday

Algorithm Design Techniques

I Greedy

I Divide and Conquer

I Dynamic Programming

I Network Flows

Dynamic Programming Schedule

I Today: Intro + Scheduling and Packing
I Thursday: Sequence Alignment + Biology problems
I 3/26: Graph problems
I 3/28: AI + Statistics problems

Divide and Conquer Recipe

I Devise recursive form for solution
I Implement recursion

Example Compute sum of leaf weights for each internal node in
k-ary tree. (From practice exam)

I Recursive form w(v) = ∑
u child of v w(u).

Dynamic Programming Recipe

I Devise recursive form for solution
I Observe that recursive implementation involves redundant

computation. (Often exponential time)
I Design iterative algorithm that solves all subproblems without

redundancy.



Example (From HW1)

Problem. Given array A of length n, compute matrix B with
B[i, j] = A[i] + . . . + A[j] for i < j.

for i = 1, 2, . . . , n do
for j = i + 1, . . . , n do

Add up A[i] + A[i + 1] + ... + A[j]. Store in B[i, j].
end for

end for

Running time: Θ(n3).

Example (From HW1)

Problem. Compute B with B[i, j] = A[i] + . . . + A[j] for i < j.

B[i, j] =
{

B[i, j − 1] + A[j] if j > i

0 if j ≤ i

for i = 1, 2, . . . , n do
B[i, i] = 0
for j = i + 1, . . . , n do

Add up B[i, j − 1] + A[j]. Store in B[i, j].
end for

end for

Running time: O(n2)

Weighted Interval Scheduling

I Television scheduling problem: Given n shows with start time si

and finish time fi, watch as many shows as possible, with no
overlap.

I A Twist: Each show has a value vi and want a set of shows S,
with no overlap and maximum value ∑

i∈S vi.

I Greedy?

Example

s = (0, 1, 4, 3, 7, 8)
f = (3, 5, 6, 9, 10, 11)
v = (2, 4, 4, 7, 2, 1)

Recursive Form

Order shows by finish time f1 ≤ f2, . . . ,≤ fn.
Compute p(i) = max{j : fj ≤ si} for all i.

I Suppose O is an optimal solution (O = OPT(n)).
I If n ∈ O, then O = OPT(p(n)) ∪ {n}.
I If n /∈ O then O = OPT(n− 1).

I Define V = VAL(n) to be the optimal value.
I If n ∈ O, then V = VAL(p(n)) + vn.
I If n /∈ O, then V = VAL(n− 1).

Recurrence VAL(n) = max{VAL(p(n)) + vn, VAL(n− 1)}.

Unrolling recurrence?

Val(j):
If j = 0 return 0.
Return max{Val(p(j)) + vj , Val(j − 1)}.

I Val(n) can require 2n calls in the worst case.
I Only n + 1 values to compute ⇒ redundancy!



Memoized approach

Idea. Save the output of recursive calls when you do them.

Array M [0...n] = null.
M-Val(j):

If j = 0 return 0.
M [j] 6= null, return M [j].
M [j]← max{vj + M-Val(p(j)), M-Val(j − 1)}.
Return M [j].

Running time: O(n).

Iterative approach

Idea. Work from 0→ n computing array entries only once.

Array M [0..n] = null.
I-All-Vals(n):

M [0] = 0.
for j = 1, . . . , n do

M [j]← max{vj + M [p(j)], M [j − 1]}.
end for

Running time: O(n).

Finding the optimum set

I Suppose O is an optimal solution (O = OPT(n)).
I If n ∈ O, then O = OPT(p(n)) ∪ {n}.
I If n /∈ O then O = OPT(n− 1).

Weighted-IS(n)
Sort by finish time fj , compute p(j).
M ← I-All-Vals(n) # Compute M array
S ← {}, j = n.
while j 6= 0 do

If M [p(j)] + vj ≥M [j − 1], S ← S ∪ {j}, j ← p(j).
Else j ← j − 1.

end while
Return S.

Weighted Interval Scheduling Takeaways

I Solution has recursive form.
I Can avoid unraveling the entire recursion.
I Dynamic Programming Table. The M array.
I Compute optimal value first, finding solution is easy after.


