CMPSCI 311: Introduction to Algorithms
Lecture 12: Dynamic Programming 1
Akshay Krishnamurthy
University of Massachusetts
Last Compied: March 19, 2018

Announcements

- Homework 2 graded, regrades open
- Homework 4 out Wednesday

Algorithm Design Techniques

- Greedy
- Divide and Conquer
- Dynamic Programming
- Network Flows

Divide and Conquer Recipe

- Devise recursive form for solution
- Implement recursion

Example Compute sum of leaf weights for each internal node in k-ary tree. (From practice exam)

- Recursive form $w(v)=\sum_{u \text { child of } v} w(u)$.

Dynamic Programming Schedule

- Today: Intro + Scheduling and Packing
- Thursday: Sequence Alignment + Biology problems
- 3/26: Graph problems
- 3/28: AI + Statistics problems

Dynamic Programming Recipe

- Devise recursive form for solution
- Observe that recursive implementation involves redundant computation. (Often exponential time)
- Design iterative algorithm that solves all subproblems without redundancy.

Example (From HW1)

Problem. Given array A of length n, compute matrix B with $B[i, j]=A[i]+\ldots+A[j]$ for $i<j$.
for $i=1,2, \ldots, n$ do
for $j=i+1, \ldots, n$ do
Add up $A[i]+A[i+1]+\ldots+A[j]$. Store in $B[i, j]$. end for
end for
Running time: $\Theta\left(n^{3}\right)$.

Example (From HW1)

Problem. Compute B with $B[i, j]=A[i]+\ldots+A[j]$ for $i<j$.

$$
B[i, j]=\left\{\begin{aligned}
B[i, j-1]+A[j] & \text { if } j>i \\
0 & \text { if } j \leq i
\end{aligned}\right.
$$

for $i=1,2, \ldots, n$ do

$$
B[i, i]=0
$$

$$
\text { for } j=i+1, \ldots, n \text { do }
$$

Add up $B[i, j-1]+A[j]$. Store in $B[i, j]$.
end for
end for
Running time: $O\left(n^{2}\right)$

Example

$$
\begin{aligned}
& s=(0,1,4,3,7,8) \\
& f=(3,5,6,9,10,11) \\
& v=(2,4,4,7,2,1)
\end{aligned}
$$

Unrolling recurrence?

$\operatorname{Val}(\mathrm{j})$:
If $j=0$ return 0 .
Return $\max \left\{\operatorname{Val}(p(j))+v_{j}, \operatorname{Val}(j-1)\right\}$.

- $\mathrm{Val}(\mathrm{n})$ can require 2^{n} calls in the worst case.
- Only $n+1$ values to compute \Rightarrow redundancy!

Memoized approach

Idea. Save the output of recursive calls when you do them.

Array $M[0 \ldots n]=$ null.
M-Val(j):
If $j=0$ return 0 .
$M[j] \neq$ null, return $M[j]$.
$M[j] \leftarrow \max \left\{v_{j}+\mathrm{M}-\operatorname{Val}(p(j)), \mathrm{M}-\operatorname{Val}(j-1)\right\}$.
Return $M[j]$.

Running time: $O(n)$.

Iterative approach

Idea. Work from $0 \rightarrow n$ computing array entries only once.

Array $M[0 . . n]=$ null.
I-All-Vals(n):
$M[0]=0$.
for $j=1, \ldots, n$ do
$M[j] \leftarrow \max \left\{v_{j}+M[p(j)], M[j-1]\right\}$. end for

Running time: $O(n)$.

Weighted Interval Scheduling Takeaways

- Solution has recursive form.
- Can avoid unraveling the entire recursion.
- Dynamic Programming Table. The M array.
- Compute optimal value first, finding solution is easy after

