CMPSCI 311: Introduction to Algorithms
Lecture 13: Dynamic Programming 2
Akshay Krishnamurthy
University of Massachusetts
Last Compiled: March 21, 2018

Recap - Dynamic Programming Recipe

- Devise recursive form for solution
- Observe that recursive implementation involves redundant computation. (Often exponential time)
- Design iterative algorithm that solves all subproblems without redundancy.

Recap: Weighted Interval Scheduling

- n shows with start s_{i}, finish f_{i}, value v_{i}
- Find set S of compatible shows with maximum value $\sum_{i \in S} v_{i}$.

Recurrence $\operatorname{VAL}(m)=\max \left\{\operatorname{VAL}(p(m))+v_{m}, \operatorname{VAL}(m-1)\right\}$

- With $p(m)=\max \left\{j: f_{j} \leq s_{m}\right\}$
- Rather than solve recursively, solve iteratively from $1, \ldots, n$.

Solution Recurrence

Let O be the optimal solution.

- If $n \notin O$ then O is optimal solution using $\{1, \ldots, n-1\}$.
- If $n \in O$ then O is optimal solution using $\{1, \ldots, n-1\}$ and budget $W-w_{n}$.
$\operatorname{VAL}(j, W)=\max \left\{\operatorname{VAL}(j-1, W), w_{j}+\operatorname{VAL}\left(j-1, W-w_{j}\right)\right\}$
Unless $W<w_{j}$, then $\operatorname{VAL}(j, W)=\operatorname{VAL}(j-1, W)$.
Need to track both jobs and remaining budget.

Subset Sum

Problem. Given n jobs where job i requires w_{i} minutes of time and a budget W.

- Find subset S that maximizes $\sum_{i \in S} w_{i}$ and has $\sum_{i \in S} w_{i} \leq W$.
- Example: $w_{1}=2, w_{2}=3, w_{3}=5, w_{4}=6, w_{5}=8, W=12$
- Greedy? Divide and Conquer?

SS Dynamic Program

```
SS-Table(n,W)
    \(M[0 . . n, 0 . . W]=\) null
    \(M[0,:]=0\)
    for \(j=1, \ldots, n\) do
        for \(w=0, \ldots, W\) do
            if \(w<w_{j}\) then
                \(M[j, w] \leftarrow M[j-1, w]\)
            else
                    \(M[j, w] \leftarrow \max \left\{M[j-1, w], w_{j}+M\left[j-1, w-w_{j}\right]\right\}\)
            end if
        end for
    end for
```

Example

$w_{1}=2, w_{2}=2, w_{3}=3, W=4$
$M[j, w] \leftarrow \max \left\{M[j-1, w], w_{j}+M\left[j-1, w-w_{j}\right]\right\}$
$j=3$ $w=0$ $w=1$ $w=2$ $w=3$ $w=4$ $j=2$ 0 0 2 3 4 $j=1$ 0 0 2 2 4 $j=0$ 0 0 0 0 2

Running Time

- Table has $O(n W)$ entries, each entry requires $O(1)$ computation.
- Finding optimal solution takes $O(n)$ time with table.
- $\Rightarrow O(n W)$ time.
- Not polynomial in size of the input, since W can be specified in $\log _{2} W$ bits. Pseudo-polynomial time

Some biology background

- DNA is a string of bases, taking symbols $\{A, C, G, T\}$.
- DNA is often found as paired strings where $A-T, C-G$.
- Example:

$$
\begin{array}{lllllll}
\mathrm{A} & \mathrm{~A} & \mathrm{~T} & \mathrm{~A} & \mathrm{G} & \mathrm{C} & \text { strand } \\
\mid & \mid & \mid & \mid & \mid & \mid & \\
\mathrm{T} & \mathrm{~T} & \mathrm{~A} & \mathrm{~T} & \mathrm{C} & \mathrm{G} & \text { complement }
\end{array}
$$

- RNA takes symbols $\{A, C, G, U\}$, but no complement pair.
- Instead RNA pairs with itself, forming a folded molecule.
- Folded structure critical for determining RNA function.

Finding Optimal Solution

- Similar to weighted interval scheduling.
- Walk table from $M[n, W]$, following the entry you are based on.
$w_{1}=2, w_{2}=2, \mathbf{w}_{\mathbf{3}}=\mathbf{3}, W=4$

	$w=0$	$w=1$	$w=2$	$w=3$	$w=4$
$j=3$	0	0	2	3	$\mathbf{4}$
$j=2$	0	0	2	2	$\mathbf{4}$
$j=1$	0	0	$\mathbf{2}$	2	2
$j=0$	$\mathbf{0}$	0	0	0	0

- Protein structure prediction
- Sequence Alignment

RNA folding

- RNA folds by binding $A-U$ and $C-G$.
- Bases can't bind to more than one other base.
- Want a stable configuration: Maximize number of pairings.

Mathematical Model

- RNA is a string $B=b_{1} b_{2} \ldots b_{n}$ where $b_{i} \in\{A, C, G, U\}$.
- A folding S is a set of pairs $\{(i, j)\}$ where $i, j \in\{1, \ldots, n\}$.
- A folding is valid if
- No sharp turns. $\forall(i, j) \in S,|i-j|>4$.
- Pairs complement. $\forall(i, j) \in S$, if $b_{i}=A$ then $b_{j}=U$, etc.
- Matching. If $(i, j) \in S$ then $(i, k) \notin S$ for any $k \neq j$.
- No crossings. If $(i, j),(k, \ell) \in S$, cannot have $i<k<j<\ell$.

Example. AUGAUGGCCAU

RNA Structure Prediction

Problem. Given RNA string B of length n, find valid folding S with maximum number of pairs.

- Consider last base b_{n}.
- Either n not paired in OPT.
- or n paired with some complementary j with $|j-n|>4$ in OPT.
- Then what? By no crossing, two subproblems.
- Subproblems are intervals $\{i, \ldots, j\}$.

Recursive form

- Let $\operatorname{VAL}(i, j)$ denote maximum number of base pairs in folding on $b_{i} b_{i+1} \ldots b_{j}$.
- Computing $\operatorname{VAL}(i, j)$.
- j is not paired $\Rightarrow \operatorname{VAL}(i, j)=\operatorname{VAL}(i, j-1)$.
- j is paired with some t, then
$\operatorname{VAL}(i, j)=1+\operatorname{VAL}(i, t-1)+\operatorname{VAL}(t+1, j-1)$.
- $\operatorname{VAL}(i, j)$ is the maximum of all of these options.
- What is a good order?

Computing VAL

Initialize $M[0 . . n, 0 . . n]$.
Set $M[i, j]=0$ for all i, j with $|i-j| \leq 4$.
for $k=5,6, \ldots, n-1$ do
for $i=1, \ldots, n-k$ do
Set $j \leftarrow i+k$.
Compute $\operatorname{VAL}(i, j)$ using recursive form.
end for
end for

- Example. AUGAUGCAU
- Running time. $O\left(n^{3}\right)$.
- How to recover the actual folding?

Sequence Alignment

- Biologists use genetic similarity to determine evolutionary relationships.
- But how do we say if two gene sequences are similar or not?
- We align them.
- Also used in spell-checkers and search engines.

Sequence Alignment

- For two strings $X=x_{1} x_{2} \ldots x_{m}, Y=y_{1} y_{2} \ldots y_{n}$, an alignment M is a matching between $\{1, \ldots, m\}$ and $\{1, \ldots, n\}$.
- M is valid if
- Matching. Each element appears in at most one pair in M.
- No crossings. If $(i, j),(k, \ell) \in S$, the $i<k$ and $j<\ell$.
- Cost of M :
- Gap penalty. For each unmatched character, you pay δ.
- Alignment cost. For a match (i, j), you pay $C\left(x_{i}, y_{j}\right)$.

$$
\operatorname{cost}(M)=\delta(n+m-2|M|)+\sum_{(i, j) \in M} C\left(x_{i}, y_{j}\right)
$$

Toward an algorithm

- Try what we did before: Let O be optimal alignment.
- If $(m, n) \in O$ we can align $x_{1} x_{2} \ldots x_{m-1}$ with $y_{1} y_{2} \ldots y_{n-1}$.
- If $(m, n) \notin O$ then either m or n must be unmatched (by no crossing).
- Optimal alignment $\operatorname{OPT}(m, n)$ is either,
- $\operatorname{OPT}(m-1, n-1) \cup\{(m, n)\}$,
- $\operatorname{OPT}(m-1, n)$ If m unmatched
- OPT $(m, n-1)$ If n unmatched

Sequence Alignment

Problem. Given strings X, Y gap-penalty δ and cost matrix C, find valid alignment of minimal cost.

Example 1 Massachusetts vs Massachussets, $\delta=0.5$, $C(x, y)=\mathbf{1}[x \neq y]$.

Example 2 Massachusetts vs Massachussets, $\delta=10$, $C(x, y)=\mathbf{1}[x \neq y]$.

Cost recurrence

Let $\operatorname{cost}(i, j)$ be cost of optimal alignment on $\{1, \ldots, i\},\{1, \ldots, j\}$.

$$
\operatorname{cost}(i, j)=\min \left\{\begin{array}{c}
C\left(x_{i}, y_{j}\right)+\operatorname{cost}(i-1, j-1) \\
\delta+\operatorname{cost}(i-1, j) \\
\delta+\operatorname{cost}(i, j-1)
\end{array}\right\}
$$

And, (i, j) is in optimal alignment if and only if first term is the minimum.

