	Recap – Dynamic Programming Recipe
CMPSCI 311: Introduction to Algorithms Lecture 13: Dynamic Programming 2 Akshay Krishnamurthy University of Massachusetts	 Devise recursive form for solution Observe that recursive implementation involves redundant computation. (Often exponential time) Design iterative algorithm that solves all subproblems without redundancy.
Recap: Weighted Interval Scheduling	Subset Sum
 n shows with start s_i, finish f_i, value v_i Find set S of compatible shows with maximum value ∑_{i∈S} v_i. Recurrence VAL(m) = max{VAL(p(m)) + v_m, VAL(m - 1)} With p(m) = max{j : f_j ≤ s_m} Rather than solve recursively, solve iteratively from 1,,n. 	Problem. Given <i>n</i> jobs where job <i>i</i> requires w_i minutes of time and a budget <i>W</i> . Find subset <i>S</i> that maximizes $\sum_{i \in S} w_i$ and has $\sum_{i \in S} w_i \leq W$. Example: $w_1 = 2, w_2 = 3, w_3 = 5, w_4 = 6, w_5 = 8, W = 12$ Greedy? Divide and Conquer?
Solution Recurrence	SS Dynamic Program
 Let O be the optimal solution. If n ∉ O then O is optimal solution using {1,,n-1}. If n ∈ O then O is optimal solution using {1,,n-1} and budget W - w_n. VAL(j, W) = max{VAL(j - 1, W), w_j + VAL(j - 1, W - w_j)} Unless W < w_j, then VAL(j, W) = VAL(j - 1, W). Need to track both jobs and remaining budget. 	$\begin{array}{l} \text{SS-Table(n,W)} \\ M[0n, 0W] = \text{null} \\ M[0,:] = 0 \\ \text{for } j = 1, \ldots, n \text{ do} \\ \text{for } w = 0, \ldots, W \text{ do} \\ \text{ if } w < w_j \text{ then} \\ & M[j,w] \leftarrow M[j-1,w] \\ \text{ else} \\ & M[j,w] \leftarrow \max\{M[j-1,w], w_j + M[j-1,w-w_j]\} \\ \text{ end if} \\ \text{ end for} \\ \text{end for} \\ \text{end for} \end{array}$

Example	Finding Optimal Solution
$w_{1} = 2, w_{2} = 2, w_{3} = 3, W = 4$ $M[j, w] \leftarrow \max\{M[j-1, w], w_{j} + M[j-1, w - w_{j}]\}$ $ w = 0 w = 1 w = 2 w = 3 w = 4 w = 2 w = 3 w = 3 w = 4 w = 2 w = 3 w $	Similar to weighted interval scheduling. Walk table from $M[n, W]$, following the entry you are based on. $w_1 = 2, w_2 = 2, \mathbf{w_3} = 3, W = 4$ $ w = 0 w = 1 w = 2 w = 3 w = 4 w = 2 w = 3 $
Running Time	Next up – Algorithmic problems in Biology
 Table has O(nW) entries, each entry requires O(1) computation. Finding optimal solution takes O(n) time with table. ⇒ O(nW) time. Not polynomial in size of the input, since W can be specified in log₂ W bits. <i>Pseudo-polynomial time</i> 	 Protein structure prediction Sequence Alignment
Some biology background	RNA folding
 DNA is a string of bases, taking symbols {A, C, G, T}. DNA is often found as paired strings where A - T, C - G. Example: A A T A G C strand T T A T C G complement RNA takes symbols {A, C, G, U}, but no complement pair. Instead RNA pairs with itself, forming a folded molecule. Folded structure critical for determining RNA function. 	 RNA folds by binding A – U and C – G. Bases can't bind to more than one other base. Want a <i>stable</i> configuration: Maximize number of pairings.

Mathematical Model	RNA Structure Prediction
 RNA is a string B = b₁b₂b_n where b_i ∈ {A, C, G, U}. A folding S is a set of pairs {(i, j)} where i, j ∈ {1,,n}. A folding is valid if No sharp turns. ∀(i, j) ∈ S, i - j > 4. Pairs complement. ∀(i, j) ∈ S, if b_i = A then b_j = U, etc. Matching. If (i, j) ∈ S then (i, k) ∉ S for any k ≠ j. No crossings. If (i, j), (k, ℓ) ∈ S, cannot have i < k < j < ℓ. Example. AUGAUGGCCAU 	 Problem. Given RNA string B of length n, find valid folding S with maximum number of pairs. ▶ Consider last base b_n. ▶ Either n not paired in OPT. ▶ or n paired with some complementary j with j - n > 4 in OPT. ▶ Then what? By no crossing, two subproblems. ▶ Subproblems are intervals {i,,j}.
Recursive form	Computing VAL
 Let VAL(i, j) denote maximum number of base pairs in folding on b_ib_{i+1}b_j. Computing VAL(i, j). j is not paired ⇒ VAL(i, j) = VAL(i, j - 1). j is paired with some t, then VAL(i, j) = 1 + VAL(i, t - 1) + VAL(t + 1, j - 1). VAL(i, j) is the maximum of all of these options. What is a good order? 	Initialize $M[0n, 0n]$.Set $M[i, j] = 0$ for all i, j with $ i - j \le 4$.for $k = 5, 6, \dots, n - 1$ dofor $i = 1, \dots, n - k$ doSet $j \leftarrow i + k$.Compute VAL (i, j) using recursive form.end forend forExample. AUGAUGCAURunning time. $O(n^3)$.How to recover the actual folding?
RNA Structure prediction takeaways	Sequence Alignment
 Two new things Dynamic programming over intervals. Each cell depends on O(n) previous cells. 	 Biologists use genetic similarity to determine evolutionary relationships. But how do we say if two gene sequences are similar or not? We align them. Also used in spell-checkers and search engines.

Sequence Alignment	Sequence Alignment
 For two strings X = x₁x₂x_m, Y = y₁y₂y_n, an alignment M is a matching between {1,,m} and {1,,n}. M is valid if Matching. Each element appears in at most one pair in M. No crossings. If (i, j), (k, ℓ) ∈ S, the i < k and j < ℓ. Cost of M: Gap penalty. For each unmatched character, you pay δ. Alignment cost. For a match (i, j), you pay C(x_i, y_j). cost(M) = δ(n + m - 2 M) + ∑_{(i,j)∈M} C(x_i, y_j). 	Problem. Given strings X, Y gap-penalty δ and cost matrix C , find valid alignment of minimal cost. Example 1 Massachusetts vs Massachussets, $\delta = 0.5$, $C(x, y) = 1[x \neq y]$. Example 2 Massachusetts vs Massachussets, $\delta = 10$, $C(x, y) = 1[x \neq y]$.
Toward an algorithm	Cost recurrence
 Try what we did before: Let O be optimal alignment. If (m,n) ∈ O we can align x₁x₂x_{m-1} with y₁y₂y_{n-1}. If (m,n) ∉ O then either m or n must be unmatched (by no crossing). Optimal alignment OPT(m, n) is either, OPT(m - 1, n - 1) ∪ {(m, n)}, OPT(m - 1, n), If m unmatched OPT(m, n - 1). 	Let $cost(i, j)$ be cost of optimal alignment on $\{1, \ldots, i\}, \{1, \ldots, j\}$. $cost(i, j) = min \begin{cases} C(x_i, y_j) + cost(i - 1, j - 1) \\ \delta + cost(i - 1, j) \\ \delta + cost(i, j - 1) \end{cases}$ And, (i, j) is in optimal alignment if and only if first term is the minimum.