
CMPSCI 311: Introduction to Algorithms
Lecture 13: Dynamic Programming 2

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: March 21, 2018

Recap – Dynamic Programming Recipe

I Devise recursive form for solution
I Observe that recursive implementation involves redundant

computation. (Often exponential time)
I Design iterative algorithm that solves all subproblems without

redundancy.

Recap: Weighted Interval Scheduling

I n shows with start si, finish fi, value vi

I Find set S of compatible shows with maximum value ∑
i∈S vi.

Recurrence VAL(m) = max{VAL(p(m)) + vm,VAL(m− 1)}

I With p(m) = max{j : fj ≤ sm}
I Rather than solve recursively, solve iteratively from 1, . . . , n.

Subset Sum

Problem. Given n jobs where job i requires wi minutes of time and
a budget W .

I Find subset S that maximizes ∑
i∈S wi and has ∑

i∈S wi ≤W .

I Example: w1 = 2, w2 = 3, w3 = 5, w4 = 6, w5 = 8,W = 12

I Greedy? Divide and Conquer?

Solution Recurrence

Let O be the optimal solution.

I If n /∈ O then O is optimal solution using {1, . . . , n− 1}.
I If n ∈ O then O is optimal solution using {1, . . . , n− 1} and

budget W − wn.

VAL(j,W) = max{VAL(j − 1,W), wj + VAL(j − 1,W − wj)}
Unless W < wj , then VAL(j,W) = VAL(j − 1,W).

Need to track both jobs and remaining budget.

SS Dynamic Program

SS-Table(n,W)
M [0..n, 0..W] = null
M [0, :] = 0
for j = 1, . . . , n do

for w = 0, . . . ,W do
if w < wj then

M [j, w]←M [j − 1, w]
else

M [j, w]← max{M [j − 1, w], wj +M [j − 1, w−wj]}
end if

end for
end for

Example

w1 = 2, w2 = 2, w3 = 3, W = 4

M [j, w]← max{M [j − 1, w], wj +M [j − 1, w − wj]}

w = 0 w = 1 w = 2 w = 3 w = 4
j = 3 0 0 2 3 4
j = 2 0 0 2 2 4
j = 1 0 0 2 2 2
j = 0 0 0 0 0 0

Finding Optimal Solution

I Similar to weighted interval scheduling.
I Walk table from M [n,W], following the entry you are based on.

w1 = 2, w2 = 2,w3 = 3, W = 4

w = 0 w = 1 w = 2 w = 3 w = 4
j = 3 0 0 2 3 4
j = 2 0 0 2 2 4
j = 1 0 0 2 2 2
j = 0 0 0 0 0 0

Running Time

I Table has O(nW) entries, each entry requires O(1) computation.

I Finding optimal solution takes O(n) time with table.

I ⇒ O(nW) time.

I Not polynomial in size of the input, since W can be specified in
log2W bits. Pseudo-polynomial time

Next up – Algorithmic problems in Biology

I Protein structure prediction
I Sequence Alignment

Some biology background

I DNA is a string of bases, taking symbols {A,C,G, T}.
I DNA is often found as paired strings where A− T,C −G.
I Example:

A A T A G C strand
| | | | | |
T T A T C G complement

I RNA takes symbols {A,C,G,U}, but no complement pair.

I Instead RNA pairs with itself, forming a folded molecule.

I Folded structure critical for determining RNA function.

RNA folding

I RNA folds by binding A− U and C −G.
I Bases can’t bind to more than one other base.
I Want a stable configuration: Maximize number of pairings.

Mathematical Model

I RNA is a string B = b1b2 . . . bn where bi ∈ {A,C,G,U}.
I A folding S is a set of pairs {(i, j)} where i, j ∈ {1, . . . , n}.
I A folding is valid if

I No sharp turns. ∀(i, j) ∈ S, |i− j| > 4.
I Pairs complement. ∀(i, j) ∈ S, if bi = A then bj = U , etc.
I Matching. If (i, j) ∈ S then (i, k) /∈ S for any k 6= j.
I No crossings. If (i, j), (k, `) ∈ S, cannot have i < k < j < `.

Example. AUGAUGGCCAU

RNA Structure Prediction

Problem. Given RNA string B of length n, find valid folding S
with maximum number of pairs.

I Consider last base bn.
I Either n not paired in OPT.

I or n paired with some complementary j with |j − n| > 4 in
OPT.
I Then what? By no crossing, two subproblems.

I Subproblems are intervals {i, . . . , j}.

Recursive form

I Let VAL(i, j) denote maximum number of base pairs in folding
on bibi+1 . . . bj .

I Computing VAL(i, j).
I j is not paired ⇒ VAL(i, j) = VAL(i, j − 1).
I j is paired with some t, then

VAL(i, j) = 1 + VAL(i, t− 1) + VAL(t+ 1, j − 1).

I VAL(i, j) is the maximum of all of these options.

I What is a good order?

Computing VAL

Initialize M [0..n, 0..n].
Set M [i, j] = 0 for all i, j with |i− j| ≤ 4.
for k = 5, 6, . . . , n− 1 do

for i = 1, . . . , n− k do
Set j ← i+ k.
Compute VAL(i, j) using recursive form.

end for
end for

I Example. AUGAUGCAU

I Running time. O(n3).

I How to recover the actual folding?

RNA Structure prediction takeaways

I Two new things
I Dynamic programming over intervals.
I Each cell depends on O(n) previous cells.

Sequence Alignment

I Biologists use genetic similarity to determine evolutionary
relationships.

I But how do we say if two gene sequences are similar or not?
I We align them.
I Also used in spell-checkers and search engines.

Sequence Alignment

I For two strings X = x1x2 . . . xm, Y = y1y2 . . . yn, an alignment
M is a matching between {1, . . . ,m} and {1, . . . , n}.

I M is valid if
I Matching. Each element appears in at most one pair in M .
I No crossings. If (i, j), (k, `) ∈ S, the i < k and j < `.

I Cost of M :
I Gap penalty. For each unmatched character, you pay δ.
I Alignment cost. For a match (i, j), you pay C(xi, yj).

cost(M) = δ(n+m− 2|M |) +
∑

(i,j)∈M

C(xi, yj).

Sequence Alignment

Problem. Given strings X,Y gap-penalty δ and cost matrix C, find
valid alignment of minimal cost.
Example 1 Massachusetts vs Massachussets, δ = 0.5,
C(x, y) = 1[x 6= y].
Example 2 Massachusetts vs Massachussets, δ = 10,
C(x, y) = 1[x 6= y].

Toward an algorithm

I Try what we did before: Let O be optimal alignment.
I If (m,n) ∈ O we can align x1x2...xm−1 with y1y2...yn−1.
I If (m,n) /∈ O then either m or n must be unmatched (by no

crossing).

I Optimal alignment OPT(m,n) is either,
I OPT(m− 1, n− 1) ∪ {(m,n)},
I OPT(m− 1, n), If m unmatched
I OPT(m,n− 1). If n unmatched

Cost recurrence

Let cost(i, j) be cost of optimal alignment on {1, . . . , i}, {1, . . . , j}.

cost(i, j) = min





C(xi, yj)+cost(i− 1, j − 1)
δ+cost(i− 1, j)
δ+cost(i, j − 1)





And, (i, j) is in optimal alignment if and only if first term is the
minimum.

