	Announcements
CMPSCI 311: Introduction to Algorithms Lecture 14: Dynamic Programming 3 Akshay Krishnamurthy University of Massachusetts	 Quiz due tonight Homework 4 out Hopefully Hw 3 graded by end of week Discussion on friday as usual
Last Compiled: March 27, 2018	
Recap Three dynamic programming problems • Weighted interval scheduling • Subproblems are prefixes • Subset sum • Subproblems are prefixes <i>and</i> remaining budget • RNA Folding • Subproblems are intervals	 Sequence Alignment Shortest paths with negative weights All-pairs shortest paths
 Sequence Alignment Biologists use genetic similarity to determine evolutionary relationships. But how do we say if two gene sequences are similar or not? We align them. Also used in spell-checkers and search engines. 	$\begin{array}{l} \textbf{Sequence Alignment} \\ \textbf{Example. TAIL vs TALE} \\ \textbf{For two strings } X = x_1x_2\ldots x_m, Y = y_1y_2\ldots y_n, \text{ an alignment} \\ M \text{ is a matching between } \{1,\ldots,m\} \text{ and } \{1,\ldots,n\}. \\ \textbf{M is valid if} \\ \textbf{Matching. Each element appears in at most one pair in } M. \\ \textbf{No crossings. If } (i,j), (k,\ell) \in M, \text{ then } i < k \text{ and } j < \ell. \\ \textbf{Sot of } M: \\ \textbf{Gap penalty. For each unmatched character, you pay } \delta. \\ \textbf{Alignment cost. For a match } (i,j), you pay C(x_i,y_j). \\ \\ \textbf{cost}(M) = \delta(m+n-2 M) + \sum_{(i,j)\in M} C(x_i,y_j). \end{array}$

Sequence Alignment	Toward an algorithm
Problem. Given strings X, Y gap-penalty δ and cost matrix C , find valid alignment of minimal cost. Example 1. TAIL vs TALE, $\delta = 0.5$, $C(x, y) = 1[x \neq y]$. Example 2. TAIL vs TALE, $\delta = 10$, $C(x, y) = 1[x \neq y]$.	 Try what we did before: Let O be optimal alignment. If (m, n) ∈ O we can align x₁x₂x_{m-1} with y₁y₂y_{n-1}. If (m, n) ∉ O then either x_m or y_n must be unmatched (by no crossing). Optimal alignment OPT(m, n) is either, OPT(m - 1, n - 1) ∪ {(m, n)}, OPT(m - 1, n), If m unmatched OPT(m, n - 1). If n unmatched
$\label{eq:cost} \hline \begin{array}{c} \mbox{Cost recurrence} \\ \mbox{Let } \cost(i,j) \mbox{ be cost of optimal alignment on } \{1,\ldots,i\},\{1,\ldots,j\}. \\ \\ \mbox{cost}(i,j) = \min \left\{ \begin{array}{c} C(x_i,y_j) + \cost(i-1,j-1) \\ \\ \delta + \cost(i-1,j) \end{array} \right\} \end{array}$	Sequence Alignment pseudocode align(X,Y) Initialize A[0m,0n] = null. A[i,0] = $i\delta$, A[0,j] = $j\delta$ for all i, j . for $j = 1,, n$ do for $i = 1,, m$ do $v_1 = C(x_i, y_j) + A[i - 1, j - 1].$ $v_2 = \delta + A[i - 1, j].$ $v_3 = \delta + A[i, j - 1].$
$\delta + \cos(i, j - 1)$ And, (i, j) is in optimal alignment iff first term is the minimum.	$\begin{split} A[i,j] &\leftarrow \min\{v_1,v_2,v_3\}.\\ & \text{end for}\\ & \text{end for}\\ & \\ & \\ Example. TALE and TAIL, \ \delta = 1, C(x,y) = 1[x \neq y].\\ & \\ & \\ & \\ & \\ \mathsf{Example. \ \delta = 1, \ cost \ 1 \ for \ matching \ different \ vowels/consonants, \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $
Sequence Alignment • Running time is $O(mn)$. • Computing particular partic	Sequence Alignment in Linear Space
Fact of $f(i, i)$ is shortest path from $(0, 0)$ to (i, i) thus	 Question. Can we find optimal alignment in O(m + n) space? Current implementation requires O(mn) space. Easy to find optimal value in O(min{m,n}) space. To compute cost(i, ·) only need to store cost(i − 1, ·). But how to recover optimal matching afterwards?
Fact. If $f(i, j)$ is shortest path from $(0, 0)$ to (i, j) , then $f(i, j) = cost(i, j)$.	

Forward and Backward Programs	Shortest paths and forward/backward programs.
 f(i, j) is shortest path from (0, 0) to (i, j) in alignment graph. g(i, j) is shortest path from (i, j) to (m, n), g(i, j) is cost of aligning x_{i+1}x_m with y_{j+1}y_n. g(i, j) = min	Fact 1. The length of the shortest path through (i, j) from $(0, 0)$ to (m, n) is $f(i, j) + g(i, j)$. Fact 2. Fix $k \in \{0,, n\}$ and let q minimize $f(q, k) + g(q, k)$. Then the shortest path from $(0, 0)$ to (m, n) passes through (q, k) .
Divide and Conquer + Dynamic Programming.	Running time analysis.
$\begin{array}{l} \texttt{Seq-Align}(\texttt{X},\texttt{Y})\\ \texttt{Let }m=\texttt{length}(X),n=\texttt{length}(Y).\\ \texttt{If }m\leq 2 \text{ or }n\leq 2, \texttt{ compute optimal alignment.}\\ \texttt{Compute }f(:,n/2) \text{ and }g(:,n/2) \text{ in linear space.}\\ \texttt{Let }q \text{ minimize }f(q,n/2)+g(q,n/2). \texttt{ Save }(q,n/2).\\ \texttt{Seq-Align}(\texttt{X}[0:q],\texttt{Y}[0:n/2])\\ \texttt{Seq-Align}(\texttt{X}[q+1:m],\texttt{Y}[n/2+1:n])\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Recurrence. $T(m,n) \leq cmn + T(q,n/2) + T(m-q,n/2)$ • If $n = m$ and q always $n/2$, then solves to $O(n^2)$. • Guess $T(m,n) \leq kmn$ and prove by induction.
Sequence Alignment Takeaways	Shortest Paths Revisited
 Standard application of dynamic programming Sometimes we can be smart about complexity (e.g., linear space). Connection to shortest paths? Widely used in the real world! Faster alignment seems impossible. 	 Shortest s → t path in directed graph with positive and negative weights? Problem. Given weighted directed graph G = (V, E, c) where c_e ∈ Z with no negative cycles, compute shortest path between s and t. Djikstra's? Any other tricks? Dynamic programming? What are the subproblems?

