
CMPSCI 311: Introduction to Algorithms
Lecture 14: Dynamic Programming 3

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: March 27, 2018

Announcements

I Quiz due tonight
I Homework 4 out
I Hopefully Hw 3 graded by end of week
I Discussion on friday as usual

Recap

Three dynamic programming problems

I Weighted interval scheduling
I Subproblems are prefixes

I Subset sum
I Subproblems are prefixes and remaining budget

I RNA Folding
I Subproblems are intervals

Today

I Sequence Alignment
I Shortest paths with negative weights
I All-pairs shortest paths

Sequence Alignment

I Biologists use genetic similarity to determine evolutionary
relationships.

I But how do we say if two gene sequences are similar or not?
I We align them.
I Also used in spell-checkers and search engines.

Sequence Alignment

Example. TAIL vs TALE

I For two strings X = x1x2 . . . xm, Y = y1y2 . . . yn, an alignment
M is a matching between {1, . . . ,m} and {1, . . . , n}.

I M is valid if
I Matching. Each element appears in at most one pair in M .
I No crossings. If (i, j), (k, `) ∈M , then i < k and j < `.

I Cost of M :
I Gap penalty. For each unmatched character, you pay δ.
I Alignment cost. For a match (i, j), you pay C(xi, yj).

cost(M) = δ(m+ n− 2|M |) +
∑

(i,j)∈M

C(xi, yj).

Sequence Alignment

Problem. Given strings X,Y gap-penalty δ and cost matrix C, find
valid alignment of minimal cost.

Example 1. TAIL vs TALE, δ = 0.5, C(x, y) = 1[x 6= y].
Example 2. TAIL vs TALE, δ = 10, C(x, y) = 1[x 6= y].

Toward an algorithm

I Try what we did before: Let O be optimal alignment.
I If (m,n) ∈ O we can align x1x2...xm−1 with y1y2...yn−1.
I If (m,n) /∈ O then either xm or yn must be unmatched (by no

crossing).

I Optimal alignment OPT(m,n) is either,
I OPT(m− 1, n− 1) ∪ {(m,n)},
I OPT(m− 1, n), If m unmatched
I OPT(m,n− 1). If n unmatched

Cost recurrence

Let cost(i, j) be cost of optimal alignment on {1, . . . , i}, {1, . . . , j}.

cost(i, j) = min

C(xi, yj) + cost(i− 1, j − 1)
δ + cost(i− 1, j)
δ + cost(i, j − 1)

And, (i, j) is in optimal alignment iff first term is the minimum.

Sequence Alignment pseudocode

align(X,Y)
Initialize A[0..m,0..n] = null.
A[i,0] = iδ, A[0,j] = jδ for all i, j.
for j = 1, . . . , n do

for i = 1, . . . ,m do
v1 = C(xi, yj) +A[i− 1, j − 1].
v2 = δ +A[i− 1, j].
v3 = δ +A[i, j − 1].
A[i,j] ← min{v1, v2, v3}.

end for
end for

Example. TALE and TAIL, δ = 1, C(x, y) = 1[x 6= y].
Example. δ = 1, cost 1 for matching different vowels/consonants,
cost 2 for matching vowel with consonant.

Sequence Alignment

I Running time is O(mn).
I Computing optimal matching is easy.
I Related to shortest path in weighted directed graph.

y1 y2

x1

x2

x3

Fact. If f(i, j) is shortest path from (0, 0) to (i, j), then
f(i, j) = cost(i, j).

Sequence Alignment in Linear Space

Question. Can we find optimal alignment in O(m+ n) space?

I Current implementation requires O(mn) space.

I Easy to find optimal value in O(min{m,n}) space.
I To compute cost(i, ·) only need to store cost(i− 1, ·).

I But how to recover optimal matching afterwards?

Forward and Backward Programs

I f(i, j) is shortest path from (0, 0) to (i, j) in alignment graph.

I g(i, j) is shortest path from (i, j) to (m,n),
I g(i, j) is cost of aligning xi+1 . . . xm with yj+1 . . . yn.

g(i, j) = min

C(xi+1, yj+1) + g(i+ 1, j + 1)
δ + g(i+ 1, j)
δ + g(i, j + 1)

Shortest paths and forward/backward programs.

Fact 1. The length of the shortest path through (i, j) from (0, 0)
to (m,n) is f(i, j) + g(i, j).

Fact 2. Fix k ∈ {0, . . . , n} and let q minimize f(q, k) + g(q, k).
Then the shortest path from (0, 0) to (m,n) passes through (q, k).

Divide and Conquer + Dynamic Programming.

Seq-Align(X,Y)
Let m = length(X), n = length(Y).
If m ≤ 2 or n ≤ 2, compute optimal alignment.
Compute f(:, n/2) and g(:, n/2) in linear space.
Let q minimize f(q, n/2) + g(q, n/2). Save (q, n/2).
Seq-Align(X[0:q],Y[0:n/2])
Seq-Align(X[q+1:m],Y[n/2+1:n])

Running time O(mn) space O(m+ n)

Running time analysis.

Recurrence.

T (m,n) ≤ cmn+ T (q, n/2) + T (m− q, n/2)

I If n = m and q always n/2, then solves to O(n2).
I Guess T (m,n) ≤ kmn and prove by induction.

Sequence Alignment Takeaways

I Standard application of dynamic programming
I Sometimes we can be smart about complexity (e.g., linear space).
I Connection to shortest paths?
I Widely used in the real world!
I Faster alignment seems impossible.

Shortest Paths Revisited

Shortest s t path in directed graph with positive and negative
weights?

Problem. Given weighted directed graph G = (V,E, c) where
ce ∈ Z with no negative cycles, compute shortest path between s
and t.

I Djikstra’s? Any other tricks?
I Dynamic programming? What are the subproblems?

Bellman-Ford Algorithm

Fact. If no negative cycles, shortest path has at most n− 1 edges.

I Let cost(i, v) be cost of optimal v t path with at most i edges.
I Let P be the optimal v t path using at most i+ 1 edges.
I If P uses at most i edges, then cost(i+ 1, v) = cost(i, v).
I Else P = v → w t where w t path uses at most i edges.

cost(i+ 1, v) = cv,w + cost(i, w)

Bellman-Ford

cost(i, v) = min
{

cost(i− 1, v),min
w∈V
{cv,w + cost(i− 1, w)}

}

Leads to O(n3) algorithm for shortest paths.

Extensions

I Refined analysis gives O(mn) runtime.
I Can implement in O(n) space.
I Decentralized implementation.

All-pairs shortest paths

I How fast can we compute all shortest paths in a graph?
I Djikstra’s gives O(nm log2 n).
I Bellman-Ford gives O(n2m).
I (new) Floyd-Warshall gives O(n3).

Problem. Given G = (V,E, c) with non-negative weights, compute
n× n array M where M [s, t] is the cost of shortest s t path.

I What are good subproblems?

Floyd-Warshall algorithm

I Let cost(s, t, k) be cost of shortest s t path using only vertices
{1, . . . , k} as intermediate points.

cost(s, t, k + 1) = min
{

cost(s, t, k)
cost(s, k + 1, k) + cost(k + 1, t, k)

I Running time. O(n3).
I Recovering paths requires careful book-keeping.

