CMPSCI 311: Introduction to Algorithms
Lecture 14: Dynamic Programming 3
Akshay Krishnamurthy
University of Massachusetts
Last Compiled: March 27, 2018

Announcements

- Quiz due tonight
- Homework 4 out
- Hopefully Hw 3 graded by end of week
- Discussion on friday as usual

Recap

Three dynamic programming problems

- Weighted interval scheduling
- Subproblems are prefixes
- Subset sum
- Subproblems are prefixes and remaining budget
- RNA Folding
- Subproblems are intervals

Sequence Alignment

- Biologists use genetic similarity to determine evolutionary relationships.
- But how do we say if two gene sequences are similar or not?
- We align them
- Also used in spell-checkers and search engines.

Sequence Alignment

Example. TAIL vs TALE

- For two strings $X=x_{1} x_{2} \ldots x_{m}, Y=y_{1} y_{2} \ldots y_{n}$, an alignment M is a matching between $\{1, \ldots, m\}$ and $\{1, \ldots, n\}$.
- M is valid if
- Matching. Each element appears in at most one pair in M.
- No crossings. If $(i, j),(k, \ell) \in M$, then $i<k$ and $j<\ell$.
- Cost of M :
- Gap penalty. For each unmatched character, you pay δ
- Alignment cost. For a match (i, j), you pay $C\left(x_{i}, y_{j}\right)$.

$$
\operatorname{cost}(M)=\delta(m+n-2|M|)+\sum_{(i, j) \in M} C\left(x_{i}, y_{j}\right)
$$

Sequence Alignment

Problem. Given strings X, Y gap-penalty δ and cost matrix C, find valid alignment of minimal cost.

Example 1. TAIL vs TALE, $\delta=0.5, C(x, y)=\mathbf{1}[x \neq y]$.
Example 2. TAIL vs TALE, $\delta=10, C(x, y)=\mathbf{1}[x \neq y]$.

Toward an algorithm

- Try what we did before: Let O be optimal alignment.
- If $(m, n) \in O$ we can align $x_{1} x_{2} \ldots x_{m-1}$ with $y_{1} y_{2} \ldots y_{n-1}$.
- If $(m, n) \notin O$ then either x_{m} or y_{n} must be unmatched (by no crossing).
- Optimal alignment $\operatorname{OPT}(m, n)$ is either,
- $\operatorname{OPT}(m-1, n-1) \cup\{(m, n)\}$,
- OPT $(m-1, n)$, If m unmatched
- OPT $(m, n-1)$ If n unmatched

Sequence Alignment pseudocode

align (X,Y)
Initialize $A[0 . . m, 0 . . n]=$ null.
$\mathrm{A}[\mathrm{i}, 0]=i \delta, \mathrm{~A}[0, \mathrm{j}]=j \delta$ for all i, j.
for $j=1, \ldots, n$ do
for $i=1, \ldots, m$ do
$v_{1}=C\left(x_{i}, y_{j}\right)+A[i-1, j-1]$.
$v_{2}=\delta+A[i-1, j]$.
$v_{3}=\delta+A[i, j-1]$.
$\mathrm{A}[\mathrm{i}, \mathrm{j}] \leftarrow \min \left\{v_{1}, v_{2}, v_{3}\right\}$.
end for
end for
Example. TALE and TAIL, $\delta=1, C(x, y)=\mathbf{1}[x \neq y]$.
Example. $\delta=1$, cost 1 for matching different vowels/consonants, cost 2 for matching vowel with consonant.

Sequence Alignment

- Running time is $O(m n)$.
- Computing optimal matching is easy
- Related to shortest path in weighted directed graph.

Fact. If $f(i, j)$ is shortest path from $(0,0)$ to (i, j), then $f(i, j)=\operatorname{cost}(i, j)$.

Sequence Alignment in Linear Space

Question. Can we find optimal alignment in $O(m+n)$ space?

- Current implementation requires $O(m n)$ space.
- Easy to find optimal value in $O(\min \{m, n\})$ space.
- To compute $\operatorname{cost}(i, \cdot)$ only need to store $\operatorname{cost}(i-1, \cdot)$.
- But how to recover optimal matching afterwards?

Forward and Backward Programs

- $f(i, j)$ is shortest path from $(0,0)$ to (i, j) in alignment graph.
- $g(i, j)$ is shortest path from (i, j) to (m, n),
- $g(i, j)$ is cost of aligning $x_{i+1} \ldots x_{m}$ with $y_{j+1} \ldots y_{n}$.

$$
g(i, j)=\min \left\{\begin{array}{c}
C\left(x_{i+1}, y_{j+1}\right)+g(i+1, j+1) \\
\delta+g(i+1, j) \\
\delta+g(i, j+1)
\end{array}\right\}
$$

Shortest paths and forward/backward programs.

Fact 1. The length of the shortest path through (i, j) from $(0,0)$ to (m, n) is $f(i, j)+g(i, j)$.

Fact 2. Fix $k \in\{0, \ldots, n\}$ and let q minimize $f(q, k)+g(q, k)$ Then the shortest path from $(0,0)$ to (m, n) passes through (q, k).

Divide and Conquer + Dynamic Programming.

Seq-Align (X, Y)

Let $m=$ length $(X), n=$ length (Y).
If $m \leq 2$ or $n \leq 2$, compute optimal alignment.
Compute $f(:, n / 2)$ and $g(:, n / 2)$ in linear space.
Let q minimize $f(q, n / 2)+g(q, n / 2)$. Save $(q, n / 2)$.
Seq-Align (X[0:q],Y[0:n/2])
Seq-Align($X[q+1: m], Y[n / 2+1: n])$

Running time analysis.

Recurrence.

$$
T(m, n) \leq c m n+T(q, n / 2)+T(m-q, n / 2)
$$

- If $n=m$ and q always $n / 2$, then solves to $O\left(n^{2}\right)$.
- Guess $T(m, n) \leq k m n$ and prove by induction.

Sequence Alignment Takeaways

- Standard application of dynamic programming
- Sometimes we can be smart about complexity (e.g., linear space).
- Connection to shortest paths?
- Widely used in the real world
- Faster alignment seems impossible.

Shortest Paths Revisited

Shortest $s \rightsquigarrow t$ path in directed graph with positive and negative weights?

Problem. Given weighted directed graph $G=(V, E, c)$ where $c_{e} \in \mathbb{Z}$ with no negative cycles, compute shortest path between s and t.

- Djikstra's? Any other tricks?
- Dynamic programming? What are the subproblems?

Bellman-Ford Algorithm

Fact. If no negative cycles, shortest path has at most $n-1$ edges.

- Let $\operatorname{cost}(i, v)$ be cost of optimal $v \rightsquigarrow t$ path with at most i edges.
- Let P be the optimal $v \rightsquigarrow t$ path using at most $i+1$ edges.
- If P uses at most i edges, then $\operatorname{cost}(i+1, v)=\operatorname{cost}(i, v)$.
- Else $P=v \rightarrow w \rightsquigarrow t$ where $w \rightsquigarrow t$ path uses at most i edges.

$$
\operatorname{cost}(i+1, v)=c_{v, w}+\operatorname{cost}(i, w)
$$

Bellman-Ford

$$
\operatorname{cost}(i, v)=\min \left\{\operatorname{cost}(i-1, v), \min _{w \in V}\left\{c_{v, w}+\operatorname{cost}(i-1, w)\right\}\right\}
$$

Leads to $O\left(n^{3}\right)$ algorithm for shortest paths.

Extensions

- Refined analysis gives $O(m n)$ runtime.
- Can implement in $O(n)$ space.

Decentralized implementation.

All-pairs shortest paths

- How fast can we compute all shortest paths in a graph?
- Djikstra's gives $O\left(n m \log _{2} n\right)$.
- Bellman-Ford gives $O\left(n^{2} m\right)$.
- (new) Floyd-Warshall gives $O\left(n^{3}\right)$.

Problem. Given $G=(V, E, c)$ with non-negative weights, compute $n \times n$ array M where $M[s, t]$ is the cost of shortest $s \rightsquigarrow t$ path.
-What are good subproblems?

Floyd-Warshall algorithm

- Let $\operatorname{cost}(s, t, k)$ be cost of shortest $s \rightsquigarrow t$ path using only vertices $\{1, \ldots, k\}$ as intermediate points.

$$
\operatorname{cost}(s, t, k+1)=\min \left\{\begin{array}{l}
\operatorname{cost}(s, t, k) \\
\operatorname{cost}(s, k+1, k)+\operatorname{cost}(k+1, t, k)
\end{array}\right.
$$

- Running time. $O\left(n^{3}\right)$.
- Recovering paths requires careful book-keeping.

