
CMPSCI 311: Introduction to Algorithms
Lecture 15: Dynamic Programming 4

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: March 29, 2018

Today

I All pairs shortest paths
I Dynamic programming failure
I Dynamic programming takeaways
I Planning and Decision Processes

All-pairs shortest paths

I How fast can we compute all shortest paths in a graph?
I Djikstra’s gives O(nm log2 n). (Requires non-negative weights)
I Bellman-Ford gives O(n2m). (Allows negative weights)
I (new) Floyd-Warshall gives O(n3).

Problem. Given G = (V,E, c) with non-negative weights, compute
n× n array M where M [s, t] is the cost of shortest s t path.

I What are good subproblems?

Floyd-Warshall algorithm

I Let cost(s, t, k) be cost of shortest s t path using only vertices
{1, . . . , k} as intermediate points.

I Consider cost(s, t, n) for fixed s, t.
I If n not on shortest path, then cost(s, t, n) = cost(s, t, n− 1).
I Otherwise, cost(s, t, n) = cost(s, n, n− 1) + cost(n, t, n− 1).

cost(s, t, k + 1) = min
{

cost(s, t, k)
cost(s, k + 1, k) + cost(k + 1, t, k)

I Running time. O(n3).
I Recovering paths requires careful book-keeping.

Interval Scheduling

Problem. Given n shows with start time si and finish time fi,
watch as many shows as possible, with no overlap.

I Greedy: order by fi (ascending), take next show if no conflict.

I Dynamic program:
I Order by finish time f1 ≤ f2 ≤ . . . ≤ fn

I Compute p(i) = max{j : fj ≤ si}.
I VAL(n) = max{VAL(p(n)) + 1,VAL(n− 1)}.

Another attempt

I Order shows arbitrarily, let Q(i) be the shows that conflict with i
(including i).

I Consider optimal solution O,
I If n /∈ O then O is optimal on {1, . . . , n− 1}.
I If n ∈ O then O is optimal on {1, . . . , n− 1} \Q(n).

I Generally, for set of shows S, if i ∈ S,

VAL(S) = max{VAL(S \ {i}), 1 + VAL(S \Q(i))}.

I How many subproblems? Ω(2n/2)!



Proof Idea

Suppose shows are 1, . . . , n and show i conflicts with n− i+ 1.

I Process {1, . . . , n} requires {2, . . . , n− 1} and {1, . . . , n− 1}.
I {2, . . . , n− 1} requires {2, . . . , n− 2} and {3, . . . , n− 2}.
I {1, . . . , n− 1} requires {1, . . . , n− 2} and {1, 3, . . . , n− 2}.
I Creates 4 distinct subproblems.

Proof

I Suppose shows are 1, . . . , n and show i conflicts with n− i+ 1.

I Represent subsets as binary strings of length n.

I Only worry about first n/2 bits (shows 1, . . . , n/2).

I Create binary tree, where at level i process show n− i+ 1.
I Two subproblems, ith bit on and ith bit off.

I Generates all strings on n/2 bits ⇒ Ω(2n/2) subproblems.

Dynamic Programming Takeaways

Recipe

I Devise recursive form for solution
I Observe that recursive implementation involves redundant

computation. (Often exponential time)
I Design iterative algorithm that solves all subproblems without

redundancy.

Concerns

I What are the subproblems? How many are there?
I Runtime and space complexity.

Decision Processes

I Model of an agent performing a task in an environment.
I Used in AI, robotics, and many other places.

Decision Process

I Set of states S = {1, . . . , n}.
I Set of actions A = {1, . . . , k}.
I Transition model: T : S ×A→ S.
I Reward function: R : S ×A→ Z.
I Timer H.

+5

+1

Trajectories

I Agent starts in s1, takes action a1, receives reward R(s1, a1) and
transitions to s2, etc.

I Generates trajectory s1, a1, r1, s2, a2, r2, . . . , sH , aH , rH , where
rh = R(sh, ah).

I Total reward is,
H∑

h=1
rh =

H∑

h=1
R(sh, ah)

Goal. Choose actions to maximize total reward.



Decision Process

I A policy chooses an action at every state and time,

π : (S × {1, . . . ,H})→ A

Goal. Compute policy to maximize total reward.

+5

+1

Example

If H = 1:

+5

+1

π?(·, 1)

The Planning Problem
Problem. Compute optimal policy in decision process
(S,A, T,R,H).

+5

+1

π?(·, 11)

Base case

Consider H = 1.

I The optimal policy is,

π?(s, 1) = argmax
a∈A

R(s, a)

I The optimal values are,

V ?(s, 1) = max
a∈A

R(s, a)

I V ?(s,H) is maximum total reward you can achieve starting in
state s with H actions.

Inductive step
Consider arbitrary h.

I If in state s, action a, receive R(s, a) and transition to T (s, a)
with one less time point.

I How much more reward can you receive from s′ = T (s, a) with
h− 1 actions left?

V ?(s, h) = max
a∈A

R(s, a) + V ?(T (s, a), h− 1)︸ ︷︷ ︸
Q?(s,a,h)

I Policy is,

π?(s, h) = argmax
a∈A

R(s, a) + V ?(T (s, a), h− 1)

= argmax
a∈A

Q?(s, a, h)

Example

+5

+1

1

1

5

5

V ?(·, 1)



Example

+5

+1

1

1

1

1

1

5

55

5

V ?(·, 2)

Example

+5

+1

1

1

1

1

1

1

1

1

1

5

55

55

5

V ?(·, 3)

Example

+5

+1

1

1

1

1

1

1

1

1

1

1

1

5

55

55

55

V ?(·, 4)

Value iteration

ValueIteration(T,R,H)
Initialize V ?(s, 0) = 0 for all s.
Initialize π?(s, h) = null for all s, h.
for h = 1, . . . ,H do

for each state s do
V ?(s, h)← maxaR(s, a) + V ?(T (s, a), h− 1).
π?(s, h)← argmaxaR(s, a) + V ?(T (s, a), h− 1).

end for
end for
Return π?.

Extensions

I Works without timer (under some conditions)

I Also works for stochastic (Markov) Decision Processes

I Reinforcement learning: Compute optimal policy when you don’t
know T,R

I But can sample through experience.


