CMPSCI 311: Introduction to Algorithms
Lecture 15: Dynamic Programming 4
Akshay Krishnamurthy
University of Massachusetts
Last Compiled: March 29, 2018

Today

- All pairs shortest paths
- Dynamic programming failure
- Dynamic programming takeaways
- Planning and Decision Processes

All-pairs shortest paths

- How fast can we compute all shortest paths in a graph?
- Djikstra's gives $O\left(n m \log _{2} n\right)$. (Requires non-negative weights)
- Bellman-Ford gives $O\left(n^{2} m\right)$. (Allows negative weights)
- (new) Floyd-Warshall gives $O\left(n^{3}\right)$.

Problem. Given $G=(V, E, c)$ with non-negative weights, compute $n \times n$ array M where $M[s, t]$ is the cost of shortest $s \rightsquigarrow t$ path.
-What are good subproblems?

Floyd-Warshall algorithm

- Let $\operatorname{cost}(s, t, k)$ be cost of shortest $s \rightsquigarrow t$ path using only vertices $\{1, \ldots, k\}$ as intermediate points.
- Consider $\operatorname{cost}(s, t, n)$ for fixed s, t.
- If n not on shortest path, then $\operatorname{cost}(s, t, n)=\operatorname{cost}(s, t, n-1)$.
- Otherwise, $\operatorname{cost}(s, t, n)=\operatorname{cost}(s, n, n-1)+\operatorname{cost}(n, t, n-1)$.
$\operatorname{cost}(s, t, k+1)=\min \left\{\begin{array}{l}\operatorname{cost}(s, t, k) \\ \operatorname{cost}(s, k+1, k)+\operatorname{cost}(k+1, t, k)\end{array}\right.$
- Running time. $O\left(n^{3}\right)$.
- Recovering paths requires careful book-keeping.

Interval Scheduling

Problem. Given n shows with start time s_{i} and finish time f_{i}, watch as many shows as possible, with no overlap.

- Greedy: order by f_{i} (ascending), take next show if no conflict.
- Dynamic program:
- Order by finish time $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$
- Compute $p(i)=\max \left\{j: f_{j} \leq s_{i}\right\}$.
- $\operatorname{VAL}(n)=\max \{\operatorname{VAL}(p(n))+1, \operatorname{VAL}(n-1)\}$.

Another attempt

- Order shows arbitrarily, let $Q(i)$ be the shows that conflict with i (including i).
- Consider optimal solution O,
- If $n \notin O$ then O is optimal on $\{1, \ldots, n-1\}$.
- If $n \in O$ then O is optimal on $\{1, \ldots, n-1\} \backslash Q(n)$.
- Generally, for set of shows S, if $i \in S$,

$$
\operatorname{VAL}(S)=\max \{\operatorname{VAL}(S \backslash\{i\}), 1+\operatorname{VAL}(S \backslash Q(i))\}
$$

- How many subproblems? $\Omega\left(2^{n / 2}\right)$!

Proof Idea

Suppose shows are $1, \ldots, n$ and show i conflicts with $n-i+1$.

- Process $\{1, \ldots, n\}$ requires $\{2, \ldots, n-1\}$ and $\{1, \ldots, n-1\}$.
- $\{2, \ldots, n-1\}$ requires $\{2, \ldots, n-2\}$ and $\{3, \ldots, n-2\}$.
- $\{1, \ldots, n-1\}$ requires $\{1, \ldots, n-2\}$ and $\{1,3, \ldots, n-2\}$.
- Creates 4 distinct subproblems.

Dynamic Programming Takeaways

Recipe

- Devise recursive form for solution
- Observe that recursive implementation involves redundant computation. (Often exponential time)
- Design iterative algorithm that solves all subproblems without redundancy.

Concerns

- What are the subproblems? How many are there?
- Runtime and space complexity.

Decision Process

- Set of states $S=\{1, \ldots, n\}$.
- Set of actions $A=\{1, \ldots, k\}$.
- Transition model: $T: S \times A \rightarrow S$.
- Reward function: $R: S \times A \rightarrow \mathbb{Z}$.
- Timer H.

Proof

- Suppose shows are $1, \ldots, n$ and show i conflicts with $n-i+1$.
- Represent subsets as binary strings of length n.
- Only worry about first $n / 2$ bits (shows $1, \ldots, n / 2$).
- Create binary tree, where at level i process show $n-i+1$.
- Two subproblems, i th bit on and i th bit off.
- Generates all strings on $n / 2$ bits $\Rightarrow \Omega\left(2^{n / 2}\right)$ subproblems.

Decision Processes

- Model of an agent performing a task in an environment.
- Used in AI, robotics, and many other places.

Trajectories

- Agent starts in s_{1}, takes action a_{1}, receives reward $R\left(s_{1}, a_{1}\right)$ and transitions to s_{2}, etc
- Generates trajectory $s_{1}, a_{1}, r_{1}, s_{2}, a_{2}, r_{2}, \ldots, s_{H}, a_{H}, r_{H}$, where $r_{h}=R\left(s_{h}, a_{h}\right)$.
- Total reward is,

$$
\sum_{h=1}^{H} r_{h}=\sum_{h=1}^{H} R\left(s_{h}, a_{h}\right)
$$

Goal. Choose actions to maximize total reward.

Decision Process

- A policy chooses an action at every state and time,

$$
\pi:(S \times\{1, \ldots, H\}) \rightarrow A
$$

Goal. Compute policy to maximize total reward.

The Planning Problem

Problem. Compute optimal policy in decision process
(S, A, T, R, H).

$$
\pi^{\star}(\cdot, 11)
$$

Inductive step

Consider arbitrary h.

- If in state s, action a, receive $R(s, a)$ and transition to $T(s, a)$ with one less time point
- How much more reward can you receive from $s^{\prime}=T(s, a)$ with $h-1$ actions left?

$$
V^{\star}(s, h)=\max _{a \in A} \underbrace{R(s, a)+V^{\star}(T(s, a), h-1)}_{Q^{\star}(s, a, h)}
$$

- Policy is,

$$
\begin{aligned}
\pi^{\star}(s, h) & =\underset{a \in A}{\operatorname{argmax}} R(s, a)+V^{\star}(T(s, a), h-1) \\
& =\underset{a \in A}{\operatorname{argmax}} Q^{\star}(s, a, h)
\end{aligned}
$$

Example

If $H=1$:

Base case

Consider $H=1$.

- The optimal policy is,

$$
\pi^{\star}(s, 1)=\underset{a \in A}{\operatorname{argmax}} R(s, a)
$$

- The optimal values are

$$
V^{\star}(s, 1)=\max _{a \in A} R(s, a)
$$

- $V^{\star}(s, H)$ is maximum total reward you can achieve starting in state s with H actions.

Example

$V^{\star}(\cdot, 1)$

Value iteration

ValueIteration(T, R, H)
Initialize $V^{\star}(s, 0)=0$ for all s.
Initialize $\pi^{\star}(s, h)=$ null for all s, h.
for $h=1, \ldots, H$ do
for each state s do
$V^{\star}(s, h) \leftarrow \max _{a} R(s, a)+V^{\star}(T(s, a), h-1)$.
$\pi^{\star}(s, h) \leftarrow \operatorname{argmax}_{a} R(s, a)+V^{\star}(T(s, a), h-1)$.
end for
end for
Return π^{\star}.

