	Today
CMPSCI 311: Introduction to Algorithms Lecture 15: Dynamic Programming 4 Akshay Krishnamurthy University of Massachusetts	 All pairs shortest paths Dynamic programming failure Dynamic programming takeaways Planning and Decision Processes
Last Compiled: March 29, 2018	
All-pairs shortest paths	Floyd-Warshall algorithm
 How fast can we compute all shortest paths in a graph? Djikstra's gives O(nm log₂ n). (Requires non-negative weights) Bellman-Ford gives O(n²m). (Allows negative weights) (new) Floyd-Warshall gives O(n³). Problem. Given G = (V, E, c) with non-negative weights, compute n × n array M where M[s, t] is the cost of shortest s → t path. What are good subproblems? 	 Let cost(s,t,k) be cost of shortest s → t path using only vertices {1,,k} as intermediate points. Consider cost(s,t,n) for fixed s,t. If n not on shortest path, then cost(s,t,n) = cost(s,t,n-1). Otherwise, cost(s,t,n) = cost(s,n,n-1) + cost(n,t,n-1). cost(s,t,k+1) = min {cost(s,t,k) / cost(s,k+1,k) + cost(k+1,t,k)} Running time. O(n³). Recovering paths requires careful book-keeping.
Interval Scheduling	Another attempt
 Problem. Given n shows with start time s_i and finish time f_i, watch as many shows as possible, with no overlap. Greedy: order by f_i (ascending), take next show if no conflict. Dynamic program: Order by finish time f₁ ≤ f₂ ≤ ≤ f_n Compute p(i) = max{j : f_j ≤ s_i}. VAL(n) = max{VAL(p(n)) + 1, VAL(n - 1)}. 	 Order shows arbitrarily, let Q(i) be the shows that conflict with i (including i). Consider optimal solution O, If n ∉ O then O is optimal on {1,,n-1}. If n ∈ O then O is optimal on {1,,n-1} \ Q(n). Generally, for set of shows S, if i ∈ S, VAL(S) = max{VAL(S \ {i}), 1 + VAL(S \ Q(i))}. How many subproblems? Ω(2^{n/2})!

