CMPSCI 311: Introduction to Algorithms

Lecture 15: Dynamic Programming 4

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: March 29, 2018

Today

vvyVvyy

All pairs shortest paths

Dynamic programming failure
Dynamic programming takeaways
Planning and Decision Processes

All-pairs shortest paths

» How fast can we compute all shortest paths in a graph?

» Dijikstra's gives O(nmlogy n). (Requires non-negative weights)
» Bellman-Ford gives O(n?m). (Allows negative weights)
> (new) Floyd-Warshall gives O(n?).

Problem. Given G = (V, E, ¢) with non-negative weights, compute
n x n array M where M[s,t] is the cost of shortest s ~» ¢ path.

» What are good subproblems?

Floyd-Warshall algorithm

Let cost(s,t, k) be cost of shortest s ~~ t path using only vertices
{1,...,k} as intermediate points.
Consider cost(s, t,n) for fixed s,¢.

> If n not on shortest path, then cost(s,t,n) = cost(s,t,n — 1).
> Otherwise, cost(s,t,n) = cost(s,n,n — 1) 4 cost(n,t,n — 1).

cost(s, t, k)

st(s,t,k + 1) = mi
cost(s, b,k + 1) nnn{COSt(s,k+1,k>+cost(k+1»tv’f)

> Running time. O(n?).
» Recovering paths requires careful book-keeping.

Interval Scheduling

Problem. Given n shows with start time s; and finish time f;,
watch as many shows as possible, with no overlap.

> Greedy: order by f; (ascending), take next show if no conflict.

» Dynamic program:
» Order by finish time f1 < fo < ... < fu
» Compute p(i) = max{j : f; < s;}.
» VAL(n) = max{VAL(p(n)) + 1, VAL(n — 1)}.

Another attempt

Order shows arbitrarily, let Q(i) be the shows that conflict with 4
(including 7).

Consider optimal solution O,

> If n ¢ O then O is optimal on {1,...,n — 1}.
> If n € O then O is optimal on {1,...,n —1}\ Q(n).

Generally, for set of shows S, if i € S,

VAL(S) = max{VAL(S \ {i}), 1 + VAL(S \ Q(i))}.

How many subproblems? ©(27/2)!

Proof Idea

Suppose shows are 1,...,n and show i conflicts with n — i + 1.

> Process {1,...,n} requires {2,...,n —1} and {1,...,n —1}.

» {2,...,n— 1} requires {2,...,n —2} and {3,...,n — 2}.
» {1,...,n — 1} requires {1,...,n— 2} and {1,3,...,n — 2}.

> Creates 4 distinct subproblems.

Proof

» Suppose shows are 1,...,n and show i conflicts with n — ¢ + 1.
> Represent subsets as binary strings of length n.
> Only worry about first n/2 bits (shows 1,...,n/2).

» Create binary tree, where at level i process show n —i + 1.

» Two subproblems, ith bit on and ith bit off.

> Generates all strings on n/2 bits = Q(2"/2) subproblems.

Dynamic Programming Takeaways

Recipe

» Devise recursive form for solution

» Observe that recursive implementation involves redundant
computation. (Often exponential time)

> Design iterative algorithm that solves all subproblems without
redundancy.

Concerns

» What are the subproblems? How many are there?

> Runtime and space complexity.

Decision Processes

» Model of an agent performing a task in an environment.
» Used in Al, robotics, and many other places.

Decision Process

> Set of states S = {1,...,n}.

> Set of actions A = {1,...,k}.

» Transition model: T: S x A — S.
» Reward function: R: S x A — Z.
> Timer H.

+1

Trajectories

> Agent starts in sy, takes action a, receives reward R(s1,a1) and
transitions to ss, etc.

> Generates trajectory s1,a1,71,82,a2,72,...,Si, GH,TH, Where
ry, = R(sp,ap).

» Total reward is,

H H
> rn=Y_ R(sn,an)

Goal. Choose actions to maximize total reward.

Decision Process

> A policy chooses an action at every state and time,

Example

If H=1:
m:(Sx{l,....,H}) > A
1
Goal. Compute policy to maximize total reward. -:
|
+1
o || o
The Planning Problem Base case
Problem. Compute optimal policy in decision process
i i Pl P Consider H = 1.

(S,A,T,R,H).

4l - -
| HH
- -
1 | |
] 4 4
- -
1T |
] p 2
o N
(-, 11)

» The optimal policy is,

7*(s,1) = argmax R(s, a)
acA

» The optimal values are,

* _
V*(s,1) = max R(s,a)

» V*(s,H) is maximum total reward you can achieve starting in
state s with H actions.

Inductive step
Consider arbitrary h.

» If in state s, action a, receive R(s,a) and transition to T'(s, a)
with one less time point.

» How much more reward can you receive from s’ = T'(s,a) with
h — 1 actions left?

V*(s,h) = max R(s,a)+ V*(T(s,a),h —1)
ac
Q*(s,a,h)

» Policy is,

7*(s,h) = argmax R(s,a) + V*(T(s,a),h — 1)
acA

= argmax Q*(s, a, h)
acA

Example

+1 1

V*('7 1)

Example

+1 1 1
1 1 5
1 5 5
- I
V*('72)

Example

+1 1 1 1 5
1 1 1 5 5
1 1 5 5
NN D
V*(',3)

Example Value iteration
ol 1 1 1 5 5 ValueIteration(T,R,H)
Initialize V*(s,0) = 0 for all s.
Initialize 7*(s, h) = null for all s, h.
1 1 1 ’ ’
> > forh=1,...,H do
1 1 1 5 5 for each state s do
V*(s, h) - max, R(s,a) + V*(T(s,a),h —1).
(s, h) < argmax, R(s,a) + V*(T'(s,a),h —1).
! 1 5 end for
end for
V*(-,4) Return 7*.
Extensions

» Works without timer (under some conditions)
» Also works for stochastic (Markov) Decision Processes

» Reinforcement learning: Compute optimal policy when you don't
know T, R

> But can sample through experience.

