
CMPSCI 311: Introduction to Algorithms
Lecture 16: Network Flows

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: April 3, 2018

Algorithm Design Techniques

I Greedy

I Divide and Conquer

I Dynamic Programming

I Network Flows

Network Flow

I Previous topics (greedy, dynamic programming, divide and
conquer etc.) were design techniques.

I Network flow relates to a specific class of problems with many
applications

I Direct applications:
commodities in networks
I transporting food on the

rail network
I packets on the internet
I gas through pipes

I Indirect applications:
I Matching in graphs
I Airline scheduling
I Baseball elimination

Plan: design and analyze algorithms for max-flow problem, then
apply to solve other problems

First, a Story About Flow and Cuts
Key theme: flows in a network are intimately related to cuts
Soviet rail network in 1955

On the history of the transportation and maximum flow problems. Alexander Schrijver, Math Programming, 2002.

Capacity

v1 v2

v3 v4

ts

16

13

14

9

12

4
7

20

4

Capacity/Flow

v1 v2

v3 v4

ts

16/11

13/8

14/11

9/4

12/12

4/1
7/7

20/15

4/4



Defining Flows

I Flow network
I Directed graph
I Source node s and target node t
I Edge capacities c(e) ≥ 0

I Flow
I Capacity Constraints: 0 ≤ f(e) ≤ c(e) on each edge
I Conservation Constraints:

f in(s) = 0 , fout(t) = 0 , ∀v ∈ V \{s, t} f in(v) = fout(v)

where f in(v) = ∑
e in to v f(e) and fout(v) = ∑

e out of v f(e)
I Max flow problem: find a flow of maximum value v(f) = fout(s)

Designing a Max-Flow Algorithm

Something that doesn’t work: Repeatedly choose paths and
“augment” flow on those paths until we can no longer do so

Residual Graph
Residual graph: data structure to identify opportunities to push
more flow on edges with leftover capacity or undo flow on edges
already carrying flow.

Original edge e = (u, v) ∈ E

I Flow f(e)
I Capacity c(e)

Forward residual edge

I e = (u, v)
I residual capacity c(e)− f(e)

Backward residual edge

I if f(e) > 0, create edge e′ = (v, u)
I residual capacity f(e)

Residual Graph

Residual graph Gf with respect to flow f = graph of all forward
and backward residual edges with positive residual capacity.

Capacity

v1 v2

v3 v4

ts

16

13

14

9

12

4
7

20

4

Capacity/Flow

v1 v2

v3 v4

ts

16/11

13/8

14/11

9/4

12/12

4/1
7/7

20/15

4/4



Residual Graph

v1 v2

v3 v4

ts

11

5

5

8

31
5

4

3

11

7
5

15

4

12

Augmenting Path

Revised Idea: use paths in the residual graph to augment flow

Augment(f , P )
Let b = bottleneck(P , f) . least residual capacity in P
for edge e = (u, v) in P do

if e is a forward edge then
f(e) = f(e) + b . increase flow on forward edges

else
f(e) = f(e)− b . decrease flow on backward edges

end if
end for

Capacity/Flow

v1 v2

v3 v4

ts

16/11

13/8

14/11

9/4

12/12

4/1
7/7

20/15

4/4

Residual

v1 v2

v3 v4

ts

11

5

5

8

31
5

4

3

11

7
5

15

4

12

Augmenting Path

v1 v2

v3 v4

ts

11

5

5

8

3
5

4

3

11

7
5

15

4

12

1

Old Flow

v1 v2

v3 v4

ts

16/11

13/8

14/11

9/4

12/12

4/1
7/7

20/15

4/4



New Flow

v1 v2

v3 v4

ts

16/11

13/12

14/11

9/0

12/12

4/1
7/7

20/19

4/4

Ford-Fulkerson Algorithm

Repeatedly find augmenting paths in the residual graph and use
them to augment flow!

Ford-Fulkerson(G, s, t)
. Initially, no flow
Initialize f(e) = 0 for all edges e
Initialize Gf = G

. Augment flow as long as it is possible
while there exists an s-t path P in Gf do

f = Augment(f , P )
update Gf

end while
return f

Ford-Fulkerson Analysis

I Step 1: argue that F-F returns a flow

I Step 2: analyze termination and running time

I Step 3: argue that F-F returns a maximum flow

Step 1: F-F returns a flow

Claim: If f is a flow then f ′ = Augment(f , P ) is also a flow.
Proof idea. Verify two conditions for f ′ to be a flow:

I f ′ satisfies capacity constraints: We add at most c(e)− f(e) flow
along a forward edge that already has f(e) flow so flow doesn’t
increase above c(e). We add at most f(e) along a backwards
edge and hence flow doesn’t decrease below 0.

I f ′ satisfies flow conservation: the extra flow into a node equals
the extra flow out of a node and hence flow is still conserved.

Step 2: Termination and Running Time

Assumption: All capacities are integers. By nature of F-F, all flow
values and residual capacities remain integers during the algorithm.

Running time:

I In each F-F iteration, flow increases by at least 1. Therefore,
number of iterations is at most v(f∗), where f∗ is the final flow.

I Let C be the total capacity of edges leaving source s
I Then v(f∗) ≤ C.
I So F-F terminates in at most C iterations

Running time per iteration? O(m + n) to find an augmenting path

Step 3: F-F returns a maximum flow

We will prove this by establishing a deep connection between flows
and cuts in graphs: the max-flow min-cut theorem.

I An s-t cut (A, B) is a partition of the nodes into sets A and B
where s ∈ A, t ∈ B

I Capacity of cut (A, B) equals

c(A, B) =
∑

e from A to B

c(e)

I Flow across a cut (A, B) equals

f(A, B) =
∑

e out of A

f(e)−
∑

e into A

f(e)



Example of Cut

v1 v2

v3 v4

ts

16/11

13/8

14/11

9/4

12/12

4/1
7/7

20/15

4/4

Capacity is 29 and flow across cut is 19.

Another Example of Cut

v1 v2

v3 v4

ts

16/11

13/8

14/11

9/4

12/12

4/1
7/7

20/15

4/4

Capacity is 34 and flow across cut is 19.

Flow Value Lemma

First relationship between cuts and flows
Lemma: let f be any flow and (A, B) be any s-t cut. Then

v(f) =
∑

e out of A

f(e)−
∑

e into A

f(e)

Basic idea of proof is to use conservation of flow: all the flow out of
s must leave A eventually.

Corollary: Cuts and Flows

Really important corollary of flow-value lemma
Corollary: Let f be any s-t flow and let (A, B) be any s-t cut.
Then v(f) ≤ c(A, B).
Proof:

v(f) =
∑

e out of A

f(e)−
∑

e into A

f(e)

≤
∑

e out of A

f(e)

≤
∑

e out of A

c(e)

= c(A, B)

Implies that if there’s a flow f∗ and cut (A∗, B∗) with
v(f∗) = c(A∗, B∗), then f∗ is a max flow and (A∗, B∗) is a min cut.

F-F returns a maximum flow

Theorem: The s-t flow f∗ returned by F-F is a maximum flow.

I Since f∗ is the final flow there are no residual paths in Gf∗ .

I Let (A∗, B∗) be the s-t cut where A∗ consists of all nodes
reachable from s in the residual graph.

I Then v(f) = f(A∗, B∗) = ∑
e out ofA∗ f(e)−∑

e intoA∗ f(e).

I Any edge out of A∗ must have f(e) = c(e) otherwise there would
be more nodes than just A∗ that reachable from s.

I Any edge into A∗ must have f(e) = 0 otherwise there would be
more nodes than just A∗ that reachable from s.

I Therefore v(f) = f(A∗, B∗) =∑
e out ofA∗ f(e)−∑

e intoA∗ f(e) = ∑
e out ofA∗ c(e) = c(A∗, B∗).


