	Algorithm Design Techniques
CMPSCI 311: Introduction to Algorithms	
Lecture 16: Network Flows	- Greedy
Akshay Krishnamurthy	- Divide and Conquer - Dynamic Programming
University of Massachusetts	- Network Flows
Last Compiled: April 3,2018	

Network Flow

- Previous topics (greedy, dynamic programming, divide and conquer etc.) were design techniques.
- Network flow relates to a specific class of problems with many applications
- Direct applications:
commodities in networks
- transporting food on the rail network
- Indirect applications:
- Matching in graphs
- Airline scheduling
- packets on the internet
- Baseball elimination
- gas through pipes

Plan: design and analyze algorithms for max-flow problem, then apply to solve other problems

First, a Story About Flow and Cuts
Key theme: flows in a network are intimately related to cuts
Soviet rail network in 1955

On the history of the transportation and maximum flow problems. Alexander Schrijver, Math Programming, 2002.

Capacity/Flow

Defining Flows

- Flow network
- Directed graph
- Source node s and target node t
- Edge capacities $c(e) \geq 0$
- Flow
- Capacity Constraints: $0 \leq f(e) \leq c(e)$ on each edge
- Conservation Constraints
$f^{\text {in }}(s)=0, f^{\text {out }}(t)=0, \quad \forall v \in V \backslash\{s, t\} f^{\text {in }}(v)=f^{\text {out }}(v)$
where $f^{i n}(v)=\sum_{e \text { in to } v} f(e)$ and $f^{\text {out }}(v)=\sum_{e \text { out of } v} f(e)$
- Max flow problem: find a flow of maximum value $v(f)=f^{\text {out }}(s)$

Residual Graph

Residual graph: data structure to identify opportunities to push more flow on edges with leftover capacity or undo flow on edges already carrying flow.

Original edge $e=(u, v) \in E$

- Flow $f(e)$
- Capacity $c(e)$

Forward residual edge

- $e=(u, v)$
- residual capacity $c(e)-f(e)$

Backward residual edge

- if $f(e)>0$, create edge $e^{\prime}=(v, u)$
- residual capacity $f(e)$

Designing a Max-Flow Algorithm

Something that doesn't work: Repeatedly choose paths and "augment" flow on those paths until we can no longer do so

Residual graph G_{f} with respect to flow $f=$ graph of all forward and backward residual edges with positive residual capacity.

Capacity/Flow

Ford-Fulkerson Analysis

- Step 1: argue that F-F returns a flow
- Step 2: analyze termination and running time
- Step 3: argue that F-F returns a maximum flow

Ford-Fulkerson Algorithm

Repeatedly find augmenting paths in the residual graph and use them to augment flow!

Ford-Fulkerson (G, s, t)
\triangleright Initially, no flow
Initialize $f(e)=0$ for all edges e
Initialize $G_{f}=G$
\triangleright Augment flow as long as it is possible
while there exists an s - t path P in G_{f} do
$f=\operatorname{Augment}(f, P)$
update G_{f}
end while
return f

Step 1: F-F returns a flow

Claim: If f is a flow then $f^{\prime}=\operatorname{Augment}(f, P)$ is also a flow.
Proof idea. Verify two conditions for f^{\prime} to be a flow:

- f^{\prime} satisfies capacity constraints: We add at most $c(e)-f(e)$ flow along a forward edge that already has $f(e)$ flow so flow doesn't increase above $c(e)$. We add at most $f(e)$ along a backwards edge and hence flow doesn't decrease below 0 .
- f^{\prime} satisfies flow conservation: the extra flow into a node equals the extra flow out of a node and hence flow is still conserved

Step 2: Termination and Running Time

Assumption: All capacities are integers. By nature of F-F, all flow values and residual capacities remain integers during the algorithm.

Running time:

- In each F-F iteration, flow increases by at least 1. Therefore, number of iterations is at most $v\left(f^{*}\right)$, where f^{*} is the final flow.
- Let C be the total capacity of edges leaving source s
- Then $v\left(f^{*}\right) \leq C$.
- So F-F terminates in at most C iterations

Running time per iteration? $O(m+n)$ to find an augmenting path

Step 3: F-F returns a maximum flow

We will prove this by establishing a deep connection between flows and cuts in graphs: the max-flow min-cut theorem.

- An s - t cut (A, B) is a partition of the nodes into sets A and B where $s \in A, t \in B$
- Capacity of cut (A, B) equals

$$
c(A, B)=\sum_{e \text { from } A \text { to } B} c(e)
$$

- Flow across a cut (A, B) equals

$$
f(A, B)=\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e)
$$

Capacity is 29 and flow across cut is 19.

Flow Value Lemma

First relationship between cuts and flows
Lemma: let f be any flow and (A, B) be any s - t cut. Then

$$
v(f)=\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e)
$$

Basic idea of proof is to use conservation of flow: all the flow out of s must leave A eventually.

F-F returns a maximum flow

Theorem: The $s-t$ flow f^{*} returned by $\mathrm{F}-\mathrm{F}$ is a maximum flow.

- Since f^{*} is the final flow there are no residual paths in $G_{f^{*}}$.
- Let $\left(A^{*}, B^{*}\right)$ be the s - t cut where A^{*} consists of all nodes reachable from s in the residual graph.
- Then $v(f)=f\left(A^{*}, B^{*}\right)=\sum_{e \text { out of } A^{*}} f(e)-\sum_{e \text { into } A^{*}} f(e)$.
- Any edge out of A^{*} must have $f(e)=c(e)$ otherwise there would be more nodes than just A^{*} that reachable from s.
- Any edge into A^{*} must have $f(e)=0$ otherwise there would be more nodes than just A^{*} that reachable from s.
- Therefore $v(f)=f\left(A^{*}, B^{*}\right)=$
$\sum_{e \text { out of } A^{*}} f(e)-\sum_{e \text { into } A^{*}} f(e)=\sum_{e \text { out of } A^{*}} c(e)=c\left(A^{*}, B^{*}\right)$.

Another Example of Cut

Capacity is 34 and flow across cut is 19 .

Corollary: Cuts and Flows

Really important corollary of flow-value lemma
Corollary: Let f be any s - t flow and let (A, B) be any s - t cut. Then $v(f) \leq c(A, B)$.
Proof:

$$
\begin{aligned}
v(f) & =\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e) \\
& \leq \sum_{e \text { out of } A} f(e) \\
& \leq \sum_{e \text { out of } A} c(e) \\
& =c(A, B)
\end{aligned}
$$

Implies that if there's a flow f^{*} and cut $\left(A^{*}, B^{*}\right)$ with $v\left(f^{*}\right)=c\left(A^{*}, B^{*}\right)$, then f^{*} is a max flow and $\left(A^{*}, B^{*}\right)$ is a min cut.

