

Defining Flows	Designing a Max-Flow Algorithm
 Flow network Directed graph Source node s and target node t Edge capacities c(e) ≥ 0 Flow Capacity Constraints: 0 ≤ f(e) ≤ c(e) on each edge Conservation Constraints: fⁱⁿ(s) = 0 , f^{out}(t) = 0 , ∀v ∈ V \ {s,t} fⁱⁿ(v) = f^{out}(v) where fⁱⁿ(v) = ∑_e in to v f(e) and f^{out}(v) = ∑_e out of v f(e) Max flow problem: find a flow of maximum value v(f) = f^{out}(s) 	Something that doesn't work: Repeatedly choose paths and "augment" flow on those paths until we can no longer do so
Residual Graph Residual graph: data structure to identify opportunities to push more flow on edges with leftover capacity or undo flow on edges already carrying flow. Original edge $e = (u, v) \in E$ • Flow $f(e)$ • Capacity $c(e)$ Forward residual edge • $e = (u, v)$ • residual capacity $c(e) - f(e)$ Backward residual edge • if $f(e) > 0$, create edge $e' = (v, u)$ • residual capacity $f(e)$	Residual Graph Residual graph G_f with respect to flow $f =$ graph of all forward and backward residual edges with positive residual capacity.
Capacity $ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & &$	Capacity/Flow

