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Algorithm Design Techniques

I Greedy

I Divide and Conquer

I Dynamic Programming

I Network Flows

Network Flow

I Previous topics (greedy, dynamic programming, divide and
conquer etc.) were design techniques.

I Network flow relates to a specific class of problems with many
applications

I Direct applications:
commodities in networks
I transporting food on the

rail network
I packets on the internet
I gas through pipes

I Indirect applications:
I Matching in graphs
I Airline scheduling
I Baseball elimination

Plan: design and analyze algorithms for max-flow problem, then
apply to solve other problems

First, a Story About Flow and Cuts
Key theme: flows in a network are intimately related to cuts
Soviet rail network in 1955

On the history of the transportation and maximum flow problems. Alexander Schrijver, Math Programming, 2002.
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Defining Flows

I Flow network
I Directed graph
I Source node s and target node t
I Edge capacities c(e) ≥ 0

I Flow
I Capacity Constraints: 0 ≤ f(e) ≤ c(e) on each edge
I Conservation Constraints:

f in(s) = 0 , fout(t) = 0 , ∀v ∈ V \{s, t} f in(v) = fout(v)

where f in(v) = ∑
e in to v f(e) and fout(v) = ∑

e out of v f(e)
I Max flow problem: find a flow of maximum value v(f) = fout(s)

Designing a Max-Flow Algorithm

Something that doesn’t work: Repeatedly choose paths and
“augment” flow on those paths until we can no longer do so

Residual Graph
Residual graph: data structure to identify opportunities to push
more flow on edges with leftover capacity or undo flow on edges
already carrying flow.

Original edge e = (u, v) ∈ E

I Flow f(e)
I Capacity c(e)

Forward residual edge

I e = (u, v)
I residual capacity c(e)− f(e)

Backward residual edge

I if f(e) > 0, create edge e′ = (v, u)
I residual capacity f(e)

Residual Graph

Residual graph Gf with respect to flow f = graph of all forward
and backward residual edges with positive residual capacity.
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Residual Graph
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Augmenting Path

Revised Idea: use paths in the residual graph to augment flow

Augment(f , P )
Let b = bottleneck(P , f) . least residual capacity in P
for edge e = (u, v) in P do

if e is a forward edge then
f(e) = f(e) + b . increase flow on forward edges

else
f(e) = f(e)− b . decrease flow on backward edges

end if
end for
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New Flow
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Ford-Fulkerson Algorithm

Repeatedly find augmenting paths in the residual graph and use
them to augment flow!

Ford-Fulkerson(G, s, t)
. Initially, no flow
Initialize f(e) = 0 for all edges e
Initialize Gf = G

. Augment flow as long as it is possible
while there exists an s-t path P in Gf do

f = Augment(f , P )
update Gf

end while
return f

Ford-Fulkerson Analysis

I Step 1: argue that F-F returns a flow

I Step 2: analyze termination and running time

I Step 3: argue that F-F returns a maximum flow

Step 1: F-F returns a flow

Claim: If f is a flow then f ′ = Augment(f , P ) is also a flow.
Proof idea. Verify two conditions for f ′ to be a flow:

I f ′ satisfies capacity constraints: We add at most c(e)− f(e) flow
along a forward edge that already has f(e) flow so flow doesn’t
increase above c(e). We add at most f(e) along a backwards
edge and hence flow doesn’t decrease below 0.

I f ′ satisfies flow conservation: the extra flow into a node equals
the extra flow out of a node and hence flow is still conserved.

Step 2: Termination and Running Time

Assumption: All capacities are integers. By nature of F-F, all flow
values and residual capacities remain integers during the algorithm.

Running time:

I In each F-F iteration, flow increases by at least 1. Therefore,
number of iterations is at most v(f∗), where f∗ is the final flow.

I Let C be the total capacity of edges leaving source s
I Then v(f∗) ≤ C.
I So F-F terminates in at most C iterations

Running time per iteration? O(m + n) to find an augmenting path

Step 3: F-F returns a maximum flow

We will prove this by establishing a deep connection between flows
and cuts in graphs: the max-flow min-cut theorem.

I An s-t cut (A, B) is a partition of the nodes into sets A and B
where s ∈ A, t ∈ B

I Capacity of cut (A, B) equals

c(A, B) =
∑

e from A to B

c(e)

I Flow across a cut (A, B) equals

f(A, B) =
∑

e out of A

f(e)−
∑

e into A

f(e)



Example of Cut
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Capacity is 29 and flow across cut is 19.

Another Example of Cut
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Capacity is 34 and flow across cut is 19.

Flow Value Lemma

First relationship between cuts and flows
Lemma: let f be any flow and (A, B) be any s-t cut. Then

v(f) =
∑

e out of A

f(e)−
∑

e into A

f(e)

Basic idea of proof is to use conservation of flow: all the flow out of
s must leave A eventually.

Corollary: Cuts and Flows

Really important corollary of flow-value lemma
Corollary: Let f be any s-t flow and let (A, B) be any s-t cut.
Then v(f) ≤ c(A, B).
Proof:

v(f) =
∑

e out of A

f(e)−
∑

e into A

f(e)

≤
∑

e out of A

f(e)

≤
∑

e out of A

c(e)

= c(A, B)

Implies that if there’s a flow f∗ and cut (A∗, B∗) with
v(f∗) = c(A∗, B∗), then f∗ is a max flow and (A∗, B∗) is a min cut.

F-F returns a maximum flow

Theorem: The s-t flow f∗ returned by F-F is a maximum flow.

I Since f∗ is the final flow there are no residual paths in Gf∗ .

I Let (A∗, B∗) be the s-t cut where A∗ consists of all nodes
reachable from s in the residual graph.

I Then v(f) = f(A∗, B∗) = ∑
e out ofA∗ f(e)−∑

e intoA∗ f(e).

I Any edge out of A∗ must have f(e) = c(e) otherwise there would
be more nodes than just A∗ that reachable from s.

I Any edge into A∗ must have f(e) = 0 otherwise there would be
more nodes than just A∗ that reachable from s.

I Therefore v(f) = f(A∗, B∗) =∑
e out ofA∗ f(e)−∑

e intoA∗ f(e) = ∑
e out ofA∗ c(e) = c(A∗, B∗).


