
CMPSCI 311: Introduction to Algorithms
Lecture 17: Network Flows II

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: April 4, 2018

Defining Flows

I Flow network
I Directed graph
I Source node s and target node t
I Edge capacities c(e) ≥ 0

I Flow
I Capacity Constraints: 0 ≤ f(e) ≤ c(e) on each edge
I Conservation Constraints:

f in(s) = 0 , fout(t) = 0 , ∀v ∈ V \{s, t} f in(v) = fout(v)

where f in(v) = ∑
e in to v f(e) and fout(v) = ∑

e out of v f(e)
I Max flow problem: find a flow of maximum value v(f) = fout(s)

Capacity/Flow

v1 v2

v3 v4

ts

16/11

13/8

14/11

9/4

12/12

4/1
7/7

20/15

4/4

Residual Graph
Residual graph: data structure to identify opportunities to push
more flow on edges with leftover capacity or undo flow on edges
already carrying flow.

Original edge e = (u, v) ∈ E

I Flow f(e)
I Capacity c(e)

Forward residual edge

I e = (u, v)
I residual capacity c(e)− f(e)

Backward residual edge

I if f(e) > 0, create edge e′ = (v, u)
I residual capacity f(e)

Residual Graph

Residual graph Gf with respect to flow f = graph of all forward
and backward residual edges with positive residual capacity.

Capacity

v1 v2

v3 v4

ts

16

13

14

9

12

4
7

20

4



Capacity/Flow

v1 v2

v3 v4

ts

16/11

13/8

14/11

9/4

12/12

4/1
7/7

20/15

4/4

Residual Graph

v1 v2

v3 v4

ts

11

5

5

8

31
5

4

3

11

7
5

15

4

12

Augmenting Path

Revised Idea: use paths in the residual graph to augment flow

Augment(f , P )
Let b = bottleneck(P , f) . least residual capacity in P
for edge e = (u, v) in P do

if e is a forward edge then
f(e) = f(e) + b . increase flow on forward edges

else
f(e) = f(e)− b . decrease flow on backward edges

end if
end for

Ford-Fulkerson Algorithm

Repeatedly find augmenting paths in the residual graph and use
them to augment flow!

Ford-Fulkerson(G, s, t)
. Initially, no flow
Initialize f(e) = 0 for all edges e
Initialize Gf = G

. Augment flow as long as it is possible
while there exists an s-t path P in Gf do

f = Augment(f , P )
update Gf

end while
return f

Ford-Fulkerson Analysis

I Step 1: argue that F-F returns a flow

I Step 2: analyze termination and running time

I Step 3: argue that F-F returns a maximum flow

I We did steps 1 and 2 last time, so just need to consider step 3.

Step 3: F-F returns a maximum flow

We will prove this by establishing a deep connection between flows
and cuts in graphs: the max-flow min-cut theorem.

I An s-t cut (A, B) is a partition of the nodes into sets A and B
where s ∈ A, t ∈ B

I Capacity of cut (A, B) equals

c(A, B) =
∑

e from A to B

c(e)

I Flow across a cut (A, B) equals

f(A, B) =
∑

e out of A

f(e)−
∑

e into A

f(e)



Example of Cut

v1 v2

v3 v4

ts

16/11

13/8

14/11

9/4

12/12

4/1
7/7

20/15

4/4

Capacity is 34 and flow across cut is 19.

Flow Value Lemma

First relationship between cuts and flows
Lemma: let f be any flow and (A, B) be any s-t cut. Then

v(f) =
∑

e out of A

f(e)−
∑

e into A

f(e)

Basic idea of proof is to use conservation of flow: all the flow out of
s must leave A eventually.

Corollary: Cuts and Flows

Really important corollary of flow-value lemma
Corollary: Let f be any s-t flow and let (A, B) be any s-t cut.
Then v(f) ≤ c(A, B).
Proof:

v(f) =
∑

e out of A

f(e)−
∑

e into A

f(e)

≤
∑

e out of A

f(e)

≤
∑

e out of A

c(e)

= c(A, B)

Implies that if there’s a flow f∗ and cut (A∗, B∗) with
v(f∗) = c(A∗, B∗), then f∗ is a max flow and (A∗, B∗) is a min cut.

F-F returns a maximum flow

Theorem: The s-t flow f∗ returned by F-F is a maximum flow.

I Since f∗ is the final flow there are no residual paths in Gf∗ .

I Let (A∗, B∗) be the s-t cut where A∗ consists of all nodes
reachable from s in the residual graph.

I By Lemma, we know:

v(f) = f(A∗, B∗) =
∑

e out ofA∗
f(e)−

∑

e intoA∗
f(e)

.

Max Flow-Min Cut Proof

I Any edge out of A∗ must have f(e) = c(e) otherwise there would
be more nodes than just A∗ that are reachable from s.

I Any edge into A∗ must have f(e) = 0 otherwise there would be
more nodes than just A∗ that are reachable from s.

I Therefore

v(f) = f(A∗, B∗) =
∑

e out ofA∗
f(e)−

∑

e intoA∗
f(e)

=
∑

e out ofA∗
c(e)

= c(A∗, B∗)

First Application of Network Flows: Bipartite Matching

I Given an undirected graph G = (V, E), a subset of edges M ⊆ E
is a matching if each node appears in at most one edge in M .

I The maximum matching problem is to find the matching with the
most edges.

I We’ll design an efficient algorithm for maximum matching in a
bipartite graph. Recall, a graph is bipartite if the nodes V can be
partitioned into two sets V = L ∪R such that all edges have one
endpoint in L and one endpoint in R.



Formulating it as a a network flow problem

I Given an instance G = (L ∪R, E) of maximum matching, create
a directed graph with nodes L ∪R ∪ {s, t}

I For each undirected edge (i, j) ∈ E, add a directed edge from
i ∈ L to j ∈ R with capacity 1.

I Add an edge with capacity 1 from s to each of the nodes in L

I Add an edge with capacity 1 from each of the nodes in R to t.

I Claim: The size of the maximum matching in G equals the value
of the maximum flow in G′

Proof of Claim

I Any matching in G has size at most the maximum flow in G′:
I Can easily extend a matching in G of size k into a flow in G′

of value k

I Any flow in G′ has size at most the maximum matching in G

I Consider the maximum flow f in G′. We may assume f(e) is
integral for each e.

I Consider set of edges from L to R that have f(e) = 1, this is
a matching because each node in L and R has at most one
unit of flow in or out respectively.

Second Application of Network Flows: Image Segmentation
I Using an expensive camera and appropriate lenses, you can get a
“bokeh" effect on portrait photos in which the background is
blurred and the foreground is in focus.

I But using cheap cameras in phones and appropriate software you
can fake this effect. . .

Formulating the problem
I Input:

I Let V be the set of pixels in the images and let E be pairs of
neighboring pixels.

I For each pixel i, you have a likelihood fi ≥ 0 that it is in the
foreground and a likelihood bi ≥ 0 that it is in the background.

I For each (i, j) ∈ E, let pij be a penalty you pay for labeling
one as foreground and one as background.

I Goal: You want to partition V into foreground pixels F and
background pixels B such that you maximize

score(F, B) =
∑

i∈F

fi +
∑

j∈B

bj −
∑

(i,j)∈E:i∈F,j∈B

pij

I Observation: Define
score′(F, B) =

∑

i∈V

fi +
∑

j∈V

bj − score(F, B)

I Maximizing score(F, B) is same as minimizing score′(F, B)

Turning the problem into a network flow problem
I Define the directed graph G where

I Pixels, V , are nodes of G
I Between each pair of neighboring pixels i and j, add an edge

in each direction with capacity pij .
I Add node s with an edge to each pixel j with capacity fi

I Add node t with an edge from each pixel j with capacity bi

I We can rewrite score′(F, B) as:

score′(F, B) =
∑

i∈V

fi +
∑

j∈V

bj − score(F, B)

=
∑

i∈B

fi +
∑

j∈F

bj +
∑

(i,j)∈E:i∈F,j∈B

pij

= c(F, B)

I So finding minimum cut in G is equivalent to maximizing the
image segmentation score.


