	Announcements
CMPSCI 311: Introduction to Algorithms Lecture 18: Intractability Akshay Krishnamurthy University of Massachusetts	 Homework 5 due Wednesday Homework 6 out Wednesday Office hours tonight 5:30-6:30 HW 4 and Midterm hopefully graded this week
Recall: Bipartite Matching	Formulating it as a a network flow problem
 Given an undirected graph G = (V, E), a subset of edges M ⊆ E is a matching if each node appears in at most one edge in M. The maximum matching problem is to find the matching with the most edges. We'll design an efficient algorithm for maximum matching in a bipartite graph. Recall, a graph is bipartite if the nodes V can be partitioned into two sets V = L ∪ R such that all edges have one endpoint in L and one endpoint in R. 	 Given an instance G = (L ∪ R, E) of maximum matching, create a directed graph with nodes L ∪ R ∪ {s,t} For each undirected edge (i, j) ∈ E, add a directed edge from i ∈ L to j ∈ R with capacity 1. Add an edge with capacity 1 from s to each of the nodes in L Add an edge with capacity 1 from each of the nodes in R to t. Claim: The size of the maximum matching in G equals the value of the maximum flow in G'
Reductions	Reducibility and Intractability
 We just showed how to <i>reduce</i> MATCHING to NETWORKFLOW. Given algorithm for NETWORKFLOW (e.g., Ford-Fulkerson) we can easily solve MATCHING. Therefore, matching is "no harder" than network flow. Definition: Problem Y is <i>poly-time reducible</i> to problem X if: We can solve Y using polynomially many computations + polynomially many calls to black-box algorithm for X. Or, if we can solve X in polynomial time, we can solve Y in polynomial time as well. Write Y ≤_P X. MATCHING ≤_P NETWORKFLOW 	 Claim 1. If Y ≤_P X and X poly-time solvable, so is Y. Can use to design algorithms. Claim 2. If Y ≤_P X and Y not poly-time solvable, then X is not either. Contrapositive of above. Can be used to prove hardness. The catch: we do not know of any problem Y that provably cannot be solved in polynomial time.

A first reduction	I ne reduction
Definition. $S \subset V$ is an <i>independent set</i> in a graph $G = (V, E)$ if no nodes in S share an edge. Problem. Does G have independent set of size at least k ?	Claim. S is independent if and only if $V \setminus S$ is a vertex cover. Proof.
	• Suppose S independent but $V \setminus S$ is not a vertex cover.
	 I hen exists (u, v) ∈ E with u, v ∉ V \ S. Implies u, v ∈ S, but S independent. Contradiction.
3 4 5	• Suppose $V \setminus S$ is a vertex cover but S is not independent.
6-7	▶ Then exists $u, v \in S$ with $(u, v) \in E$. ▶ But edge (u, v) not covered by $V \setminus S$, contradiction.
Definition. $S \subset V$ is a <i>vertex cover</i> in a graph $G = (V, E)$ if every edge adjacent to some $v \in S$. Problem. Does G have vertex cover of size at most k ?	Theorem. INDEPENDENTSET \leq_P VERTEXCOVER and VERTEXCOVER \leq_P INDEPENDENTSET.
Reduction #2: Set cover	Set cover reduction
Problem. Given a set U of n elements, subsets $S_1, \ldots, S_m \subset U$, and a number k , does there exist a collection of at most k subsets S_i whose union is U ? • Example: • U is the set of all skills. • Each S_i is a person. • Want to find a small team that has all skills. • Theorem. VERTEXCOVER \leq_P SETCOVER	Reduction. Given $G = (V, E)$ make set cover instance with $U = E$, and S_v is all edges incident to v . Keep k the same. Proof. U covered with at most k sets if and only if E covered by at most k vertices. • If v_1, \ldots, v_ℓ is a VC then $S_{v_1}, \ldots, S_{v_\ell}$ is a SC. • If $S_{i_1}, \ldots, S_{i_\ell}$ covers U , then every edge adjacent to one of $\{i_1, \ldots, i_\ell\}$.
Interlude	Common Confusions
 Decision versus Optimization Algorithms so far have been for optimization Reductions so far have been for decision But can reduce optimization to decision and vice versa. e.g., solve MAXINDSET(G) by solving INDSET(G, k) for k = 1,, n. e.g., solve INDSET(G,k) by computing S = MAXINDSET(G) and output 1[S ≥ k]. 	$Y \leq_P X$ means: • Y is "no harder" than X • X is "at least as hard" as Y. • To show Y is easy, show $Y \leq_P X$ for easy X. • To show X is hard, show $Y \leq_P X$ for hard Y. For decision problem Y, need to show two things. • Correctly outputs YES and No.

- At most one node per variable on the left.
- ▶ If node selected in clause, its negation cannot be selected.