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Announcements

I Homework 5 due Wednesday
I Homework 6 out Wednesday
I Office hours tonight 5:30-6:30
I HW 4 and Midterm hopefully graded this week

Recall: Bipartite Matching

I Given an undirected graph G = (V, E), a subset of edges M ⊆ E
is a matching if each node appears in at most one edge in M .

I The maximum matching problem is to find the matching with the
most edges.

I We’ll design an efficient algorithm for maximum matching in a
bipartite graph. Recall, a graph is bipartite if the nodes V can be
partitioned into two sets V = L ∪R such that all edges have one
endpoint in L and one endpoint in R.

Formulating it as a a network flow problem

I Given an instance G = (L ∪R, E) of maximum matching, create
a directed graph with nodes L ∪R ∪ {s, t}

I For each undirected edge (i, j) ∈ E, add a directed edge from
i ∈ L to j ∈ R with capacity 1.

I Add an edge with capacity 1 from s to each of the nodes in L

I Add an edge with capacity 1 from each of the nodes in R to t.

I Claim: The size of the maximum matching in G equals the value
of the maximum flow in G′

Reductions

I We just showed how to reduce Matching to NetworkFlow.
I Given algorithm for NetworkFlow (e.g., Ford-Fulkerson)

we can easily solve Matching.
I Therefore, matching is “no harder” than network flow.

I Definition: Problem Y is poly-time reducible to problem X if:
I We can solve Y using polynomially many computations +

polynomially many calls to black-box algorithm for X.
I Or, if we can solve X in polynomial time, we can solve Y in

polynomial time as well.
I Write Y ≤P X.

I Matching ≤P NetworkFlow

Reducibility and Intractability

I Claim 1. If Y ≤P X and X poly-time solvable, so is Y .
I Can use to design algorithms.

I Claim 2. If Y ≤P X and Y not poly-time solvable, then X is
not either.
I Contrapositive of above.
I Can be used to prove hardness.

I The catch: we do not know of any problem Y that provably
cannot be solved in polynomial time.



A first reduction

Definition. S ⊂ V is an independent set in a graph G = (V, E) if
no nodes in S share an edge.
Problem. Does G have independent set of size at least k?
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Definition. S ⊂ V is a vertex cover in a graph G = (V, E) if every
edge adjacent to some v ∈ S.
Problem. Does G have vertex cover of size at most k?

The reduction

Claim. S is independent if and only if V \ S is a vertex cover.
Proof.
I Suppose S independent but V \ S is not a vertex cover.

I Then exists (u, v) ∈ E with u, v /∈ V \ S.
I Implies u, v ∈ S, but S independent. Contradiction.

I Suppose V \ S is a vertex cover but S is not independent.
I Then exists u, v ∈ S with (u, v) ∈ E.
I But edge (u, v) not covered by V \ S, contradiction.

Theorem. IndependentSet ≤P VertexCover and
VertexCover ≤P IndependentSet.

Reduction #2: Set cover

Problem. Given a set U of n elements, subsets S1, . . . , Sm ⊂ U ,
and a number k, does there exist a collection of at most k subsets
Si whose union is U?
I Example:

I U is the set of all skills.
I Each Si is a person.
I Want to find a small team that has all skills.

I Theorem. VertexCover ≤P SetCover

Set cover reduction

Reduction. Given G = (V, E) make set cover instance with
U = E, and Sv is all edges incident to v. Keep k the same.
Proof. U covered with at most k sets if and only if E covered by
at most k vertices.
I If v1, . . . , v` is a VC then Sv1 , . . . , Sv`

is a SC.
I If Si1 , . . . , Si`

covers U , then every edge adjacent to one of
{i1, . . . , i`}.

Interlude

I Decision versus Optimization
I Algorithms so far have been for optimization
I Reductions so far have been for decision

I But can reduce optimization to decision and vice versa.
I e.g., solve MaxIndSet(G) by solving IndSet(G, k) for

k = 1, . . . , n.
I e.g., solve IndSet(G,k) by computing S = MaxIndSet(G)

and output 1[|S| ≥ k].

Common Confusions

Y ≤P X means:
I Y is “no harder” than X

I X is “at least as hard” as Y .

I To show Y is easy, show Y ≤P X for easy X.

I To show X is hard, show Y ≤P X for hard Y .
For decision problem Y , need to show two things.
I Correctly outputs Yes and No.



A bad reduction.

Given VertexCover instance (G, k), make SetCover instance
with U = E, Sv is edges incident to v, S0 = U , and integer k.
I If G has VC of size at most k, then U has cover of size at most k.
I But if U has cover of size k, G might not!
If (G, k) is a No instance, the reduction does not correctly return
No.

Reduction #3: Satisfiability

I Can we determine if a boolean formula has a satisfying
assignment?

I Let X = {x1, . . . , xn} be boolean variables
I A literal is xi or x̄i.
I A clause is or of several literals (t1 ∨ t2 ∨ . . . ∨ t`).
I A formula is and of several clauses
I An assignment v : X → {0, 1} gives T/F to each variable.

I v satisfies formula if all clauses evaluate to True.
Example.

(x1 ∨ x̄2) ∧ (x1 ∨ x4 ∨ x̄3) ∧ (x̄1 ∨ x4) ∧ (x3 ∨ x2)

Reduction #3: Satisfiability

SAT – Given boolean formula C1 ∧ C2 . . . ∧ Cm over variables
X = {x1, . . . , xn}, does there exist a satisfying assignment?

3-SAT – Given boolean formula C1 ∧ C2 . . . ∧ Cm over variables
X = {x1, . . . , xn} where each Ci has three literals, does there exist
a satisfying assignment?

I Any algorithms?
Theorem. 3-SAT ≤P IndependentSet.

Reduction #3: Satisfiability

(x1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x̄3)

I Associate nodes in graph with literals (≥ 2 per variable).
I If v(xi) = 1 in assignment, then cannot select some nodes.
I Associate 3 nodes per clause in a gadget.
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Claim Graph has IS of size n + m if and only if formula satisfiable.
I If formula satisfiable, select correct literal on the left and one per

clause on the right.

I If graph has IS,
I At most one node per clause on the right
I At most one node per variable on the left.
I If node selected in clause, its negation cannot be selected.


