| CMPSCI 311: Introduction to Algorithms |
| :--- | :--- |
| Lecture 18: Intractability |
| Akshay Krishnamurthy |
| University of Massachusetts |

Recall: Bipartite Matching

- Given an undirected graph $G=(V, E)$, a subset of edges $M \subseteq E$
is a matching if each node appears in at most one edge in M.
- The maximum matching problem is to find the matching with the
most edges.
- We'll design an efficient algorithm for maximum matching in a
bipartite graph. Recall, a graph is bipartite if the nodes V can be
partitioned into two sets $V=L \cup R$ such that all edges have one
endpoint in L and one endpoint in R.

Reductions

- We just showed how to reduce Matching to NetworkFlow.
- Given algorithm for NetworkFlow (e.g., Ford-Fulkerson) we can easily solve Matching.
- Therefore, matching is "no harder" than network flow.
- Definition: Problem Y is poly-time reducible to problem X if:
- We can solve Y using polynomially many computations + polynomially many calls to black-box algorithm for X.
- Or, if we can solve X in polynomial time, we can solve Y in polynomial time as well.
- Write $Y \leq_{P} X$.
- Matching \leq_{P} NetworkFlow

Announcements

- Homework 5 due Wednesday
- Homework 6 out Wednesday
- Office hours tonight 5:30-6:30
- HW 4 and Midterm hopefully graded this week

Formulating it as a network flow problem

- Given an instance $G=(L \cup R, E)$ of maximum matching, create a directed graph with nodes $L \cup R \cup\{s, t\}$
- For each undirected edge $(i, j) \in E$, add a directed edge from $i \in L$ to $j \in R$ with capacity 1 .
- Add an edge with capacity 1 from s to each of the nodes in L
- Add an edge with capacity 1 from each of the nodes in R to t.
- Claim: The size of the maximum matching in G equals the value of the maximum flow in G^{\prime}

Reducibility and Intractability

- Claim 1. If $Y \leq_{P} X$ and X poly-time solvable, so is Y.
- Can use to design algorithms.
- Claim 2. If $Y \leq_{P} X$ and Y not poly-time solvable, then X is not either.
- Contrapositive of above.
- Can be used to prove hardness.
- The catch: we do not know of any problem Y that provably cannot be solved in polynomial time.

A first reduction

Definition. $S \subset V$ is an independent set in a graph $G=(V, E)$ if no nodes in S share an edge.
Problem. Does G have independent set of size at least k ?

Definition. $S \subset V$ is a vertex cover in a graph $G=(V, E)$ if every edge adjacent to some $v \in S$.
Problem. Does G have vertex cover of size at most k ?

Reduction \#2: Set cover

Problem. Given a set U of n elements, subsets $S_{1}, \ldots, S_{m} \subset U$, and a number k, does there exist a collection of at most k subsets S_{i} whose union is U ?

- Example:
- U is the set of all skills.
- Each S_{i} is a person.
- Want to find a small team that has all skills.
- Theorem. VertexCover \leq_{P} SetCover

The reduction

Claim. S is independent if and only if $V \backslash S$ is a vertex cover. Proof.

- Suppose S independent but $V \backslash S$ is not a vertex cover.
- Then exists $(u, v) \in E$ with $u, v \notin V \backslash S$.
- Implies $u, v \in S$, but S independent. Contradiction.
- Suppose $V \backslash S$ is a vertex cover but S is not independent.
- Then exists $u, v \in S$ with $(u, v) \in E$.
- But edge (u, v) not covered by $V \backslash S$, contradiction.

Theorem. IndependentSet \leq_{P} VertexCover and VertexCover \leq_{P} IndependentSet.

Interlude

- Decision versus Optimization
- Algorithms so far have been for optimization
- Reductions so far have been for decision
- But can reduce optimization to decision and vice versa.
- e.g., solve MaxIndSet(G) by solving $\operatorname{IndSet}(G, k)$ for $k=1, \ldots, n$.
- e.g., solve $\operatorname{IndSET}(\mathrm{G}, \mathrm{k})$ by computing $S=\operatorname{MaxIndSET}(G)$ and output $\mathbf{1}[|S| \geq k]$.

Set cover reduction

Reduction. Given $G=(V, E)$ make set cover instance with $U=E$, and S_{v} is all edges incident to v. Keep k the same. Proof. U covered with at most k sets if and only if E covered by at most k vertices.

- If v_{1}, \ldots, v_{ℓ} is a VC then $S_{v_{1}}, \ldots, S_{v_{\ell}}$ is a SC.
- If $S_{i_{1}}, \ldots, S_{i_{\ell}}$ covers U, then every edge adjacent to one of $\left\{i_{1}, \ldots, i_{\ell}\right\}$.

Common Confusions

$Y \leq_{P} X$ means:

- Y is "no harder" than X
- X is "at least as hard" as Y.
- To show Y is easy, show $Y \leq_{P} X$ for easy X.
- To show X is hard, show $Y \leq_{P} X$ for hard Y.

For decision problem Y, need to show two things.

- Correctly outputs Yes and No.

A bad reduction.

Given VertexCover instance (G, k), make SetCover instance with $U=E, S_{v}$ is edges incident to $v, S_{0}=U$, and integer k.

- If G has VC of size at most k, then U has cover of size at most k.
- But if U has cover of size k, G might not!

If (G, k) is a No instance, the reduction does not correctly return No.

Reduction \#3: Satisfiability

- Can we determine if a boolean formula has a satisfying assignment?
- Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be boolean variables
- A literal is x_{i} or \bar{x}_{i}.
- A clause is or of several literals $\left(t_{1} \vee t_{2} \vee \ldots \vee t_{\ell}\right)$.
- A formula is and of several clauses
- An assignment $v: X \rightarrow\{0,1\}$ gives T/F to each variable.
- v satisfies formula if all clauses evaluate to True.

Example.

$$
\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(x_{1} \vee x_{4} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{4}\right) \wedge\left(x_{3} \vee x_{2}\right)
$$

Reduction \#3: Satisfiability

$$
\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)
$$

- Associate nodes in graph with literals (≥ 2 per variable).
- If $v\left(x_{i}\right)=1$ in assignment, then cannot select some nodes.
- Associate 3 nodes per clause in a gadget.

