
CMPSCI 311: Introduction to Algorithms
Lecture 18: Intractability

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: April 17, 2018

Announcements

I Homework 5 due Wednesday
I Homework 6 out Wednesday
I Office hours tonight 5:30-6:30
I HW 4 and Midterm hopefully graded this week

Recall: Bipartite Matching

I Given an undirected graph G = (V, E), a subset of edges M ⊆ E
is a matching if each node appears in at most one edge in M .

I The maximum matching problem is to find the matching with the
most edges.

I We’ll design an efficient algorithm for maximum matching in a
bipartite graph. Recall, a graph is bipartite if the nodes V can be
partitioned into two sets V = L ∪R such that all edges have one
endpoint in L and one endpoint in R.

Formulating it as a a network flow problem

I Given an instance G = (L ∪R, E) of maximum matching, create
a directed graph with nodes L ∪R ∪ {s, t}

I For each undirected edge (i, j) ∈ E, add a directed edge from
i ∈ L to j ∈ R with capacity 1.

I Add an edge with capacity 1 from s to each of the nodes in L

I Add an edge with capacity 1 from each of the nodes in R to t.

I Claim: The size of the maximum matching in G equals the value
of the maximum flow in G′

Reductions

I We just showed how to reduce Matching to NetworkFlow.
I Given algorithm for NetworkFlow (e.g., Ford-Fulkerson)

we can easily solve Matching.
I Therefore, matching is “no harder” than network flow.

I Definition: Problem Y is poly-time reducible to problem X if:
I We can solve Y using polynomially many computations +

polynomially many calls to black-box algorithm for X.
I Or, if we can solve X in polynomial time, we can solve Y in

polynomial time as well.
I Write Y ≤P X.

I Matching ≤P NetworkFlow

Reducibility and Intractability

I Claim 1. If Y ≤P X and X poly-time solvable, so is Y .
I Can use to design algorithms.

I Claim 2. If Y ≤P X and Y not poly-time solvable, then X is
not either.
I Contrapositive of above.
I Can be used to prove hardness.

I The catch: we do not know of any problem Y that provably
cannot be solved in polynomial time.

A first reduction

Definition. S ⊂ V is an independent set in a graph G = (V, E) if
no nodes in S share an edge.
Problem. Does G have independent set of size at least k?

1 2

3 4 5

6 7

Definition. S ⊂ V is a vertex cover in a graph G = (V, E) if every
edge adjacent to some v ∈ S.
Problem. Does G have vertex cover of size at most k?

The reduction

Claim. S is independent if and only if V \ S is a vertex cover.
Proof.
I Suppose S independent but V \ S is not a vertex cover.

I Then exists (u, v) ∈ E with u, v /∈ V \ S.
I Implies u, v ∈ S, but S independent. Contradiction.

I Suppose V \ S is a vertex cover but S is not independent.
I Then exists u, v ∈ S with (u, v) ∈ E.
I But edge (u, v) not covered by V \ S, contradiction.

Theorem. IndependentSet ≤P VertexCover and
VertexCover ≤P IndependentSet.

Reduction #2: Set cover

Problem. Given a set U of n elements, subsets S1, . . . , Sm ⊂ U ,
and a number k, does there exist a collection of at most k subsets
Si whose union is U?
I Example:

I U is the set of all skills.
I Each Si is a person.
I Want to find a small team that has all skills.

I Theorem. VertexCover ≤P SetCover

Set cover reduction

Reduction. Given G = (V, E) make set cover instance with
U = E, and Sv is all edges incident to v. Keep k the same.
Proof. U covered with at most k sets if and only if E covered by
at most k vertices.
I If v1, . . . , v` is a VC then Sv1 , . . . , Sv`

is a SC.
I If Si1 , . . . , Si`

covers U , then every edge adjacent to one of
{i1, . . . , i`}.

Interlude

I Decision versus Optimization
I Algorithms so far have been for optimization
I Reductions so far have been for decision

I But can reduce optimization to decision and vice versa.
I e.g., solve MaxIndSet(G) by solving IndSet(G, k) for

k = 1, . . . , n.
I e.g., solve IndSet(G,k) by computing S = MaxIndSet(G)

and output 1[|S| ≥ k].

Common Confusions

Y ≤P X means:
I Y is “no harder” than X

I X is “at least as hard” as Y .

I To show Y is easy, show Y ≤P X for easy X.

I To show X is hard, show Y ≤P X for hard Y .
For decision problem Y , need to show two things.
I Correctly outputs Yes and No.

A bad reduction.

Given VertexCover instance (G, k), make SetCover instance
with U = E, Sv is edges incident to v, S0 = U , and integer k.
I If G has VC of size at most k, then U has cover of size at most k.
I But if U has cover of size k, G might not!
If (G, k) is a No instance, the reduction does not correctly return
No.

Reduction #3: Satisfiability

I Can we determine if a boolean formula has a satisfying
assignment?

I Let X = {x1, . . . , xn} be boolean variables
I A literal is xi or x̄i.
I A clause is or of several literals (t1 ∨ t2 ∨ . . . ∨ t`).
I A formula is and of several clauses
I An assignment v : X → {0, 1} gives T/F to each variable.

I v satisfies formula if all clauses evaluate to True.
Example.

(x1 ∨ x̄2) ∧ (x1 ∨ x4 ∨ x̄3) ∧ (x̄1 ∨ x4) ∧ (x3 ∨ x2)

Reduction #3: Satisfiability

SAT – Given boolean formula C1 ∧ C2 . . . ∧ Cm over variables
X = {x1, . . . , xn}, does there exist a satisfying assignment?

3-SAT – Given boolean formula C1 ∧ C2 . . . ∧ Cm over variables
X = {x1, . . . , xn} where each Ci has three literals, does there exist
a satisfying assignment?

I Any algorithms?
Theorem. 3-SAT ≤P IndependentSet.

Reduction #3: Satisfiability

(x1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x̄3)

I Associate nodes in graph with literals (≥ 2 per variable).
I If v(xi) = 1 in assignment, then cannot select some nodes.
I Associate 3 nodes per clause in a gadget.

x1

x̄1

x2

x̄2

x3

x̄3

x1 x2

x̄3

x̄1 x̄2

x̄3

Satisfiability Proof

x1

x̄1

x2

x̄2

x3

x̄3

x1 x2

x̄3

x̄1 x̄2

x̄3

Claim Graph has IS of size n + m if and only if formula satisfiable.
I If formula satisfiable, select correct literal on the left and one per

clause on the right.

I If graph has IS,
I At most one node per clause on the right
I At most one node per variable on the left.
I If node selected in clause, its negation cannot be selected.

