CMPSCI 311: Introduction to Algorithms

Lecture 18: Intractability

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: April 17, 2018

Announcements

Homework 5 due Wednesday

Homework 6 out Wednesday

Office hours tonight 5:30-6:30

HW 4 and Midterm hopefully graded this week

vvyVvyy

Recall: Bipartite Matching

> Given an undirected graph G = (V, E), a subset of edges M C E
is a matching if each node appears in at most one edge in M.

> The maximum matching problem is to find the matching with the
most edges.

» We'll design an efficient algorithm for maximum matching in a
bipartite graph. Recall, a graph is bipartite if the nodes V' can be
partitioned into two sets V' = L U R such that all edges have one
endpoint in L and one endpoint in R.

Formulating it as a a network flow problem

> Given an instance G = (L U R, E) of maximum matching, create
a directed graph with nodes LU R U {s,t}

» For each undirected edge (i,j) € F, add a directed edge from
i € L to j € R with capacity 1.

v

Add an edge with capacity 1 from s to each of the nodes in L

v

Add an edge with capacity 1 from each of the nodes in R to t.

v

Claim: The size of the maximum matching in G equals the value
of the maximum flow in G’

Reductions

> We just showed how to reduce MATCHING to NETWORKFLOW.

> Given algorithm for NETWORKFLOW (e.g., Ford-Fulkerson)
we can easily solve MATCHING.
» Therefore, matching is “no harder” than network flow.

» Definition: Problem Y is poly-time reducible to problem X if:

» We can solve Y using polynomially many computations +
polynomially many calls to black-box algorithm for X.

» Or, if we can solve X in polynomial time, we can solve Y in
polynomial time as well.

» Write Y <p X.

» MATCHING <p NETWORKFLOW

Reducibility and Intractability

» Claim 1. If Y <p X and X poly-time solvable, so is Y.
» Can use to design algorithms.

» Claim 2. If Y <p X and Y not poly-time solvable, then X is
not either.

» Contrapositive of above.
» Can be used to prove hardness.

» The catch: we do not know of any problem Y that provably
cannot be solved in polynomial time.

A first reduction

Definition. S C V is an independent set in a graph G = (V, E) if
no nodes in S share an edge.
Problem. Does G have independent set of size at least k7

)9

G @ ©®

o

Definition. S C V is a vertex cover in a graph G = (V, E) if every
edge adjacent to some v € S.
Problem. Does GG have vertex cover of size at most k?

The reduction

Claim. S is independent if and only if V'\ S is a vertex cover.
Proof.

» Suppose S independent but V' \ S is not a vertex cover.
> Then exists (u,v) € E with u,v ¢ V'\ S.
> Implies u,v € S, but S independent. Contradiction.
> Suppose V' \ S is a vertex cover but S is not independent.

> Then exists u,v € S with (u,v) € E.
> But edge (u, v) not covered by V'\ S, contradiction.

Theorem. INDEPENDENTSET <p VERTEXCOVER and
VERTEXCOVER <p INDEPENDENTSET.

Reduction #2: Set cover

Problem. Given a set U of n elements, subsets S1,...,S, C U,
and a number k, does there exist a collection of at most k subsets
S; whose union is U?

» Example:

» U is the set of all skills.
» Each S; is a person.
» Want to find a small team that has all skills.

» Theorem. VERTEXCOVER <p SETCOVER

Set cover reduction

Reduction. Given G = (V, E') make set cover instance with

U = F, and S, is all edges incident to v. Keep k the same.
Proof. U covered with at most k sets if and only if £ covered by
at most k vertices.

> Ifvy,...,v0is aVCthen S,,,..., S, isa SC.
> If S;,...,S;, covers U, then every edge adjacent to one of

{ir,. . ie).

Interlude

» Decision versus Optimization

» Algorithms so far have been for optimization
> Reductions so far have been for decision

» But can reduce optimization to decision and vice versa.
> e.g., solve MAXINDSET(G) by solving INDSET(G, k) for
k=1,...,n.
> e.g., solve INDSET(G,k) by computing S = MAXINDSET(G)
and output 1[|S| > £].

Common Confusions

Y <p X means:

> Y is “no harder” than X

» X is “at least as hard” as Y.

» To show Y is easy, show Y <p X for easy X.
» To show X is hard, show Y <p X for hard Y.
For decision problem Y, need to show two things.

» Correctly outputs YES and No.

A bad reduction.

Given VERTEXCOVER instance (G, k), make SETCOVER instance
with U = FE, S, is edges incident to v, Sy = U, and integer k.

» If G has VC of size at most k, then U has cover of size at most k.
» But if U has cover of size k, G might not!

If (G, k) is a NO instance, the reduction does not correctly return
No.

Reduction #3: Satisfiability

» Can we determine if a boolean formula has a satisfying
assignment?

> Let X = {z1,...,2,} be boolean variables
> A literal is x; or Z;.
> A clause is or of several literals (t1 Vt2 V...V ty).
> A formula is and of several clauses
> An assignment v : X — {0,1} gives T/F to each variable.

» v satisfies formula if all clauses evaluate to True.

Example.

(.’L’l \ "EQ) A (.7!31 VgV ”EJ) A (.i‘l \Y .TJ4) A (.1‘3 V .7)2)

Reduction #3: Satisfiability

SAT - Given boolean formula C; A Cy ... A C,, over variables
X ={z1,...,x,}, does there exist a satisfying assignment?

3-SAT - Given boolean formula Cy A Cs ... A C,, over variables
X ={x1,...,x,} where each C; has three literals, does there exist
a satisfying assignment?

> Any algorithms?

Theorem. 3-SAT <p INDEPENDENTSET.

Reduction #3: Satisfiability

(Il VoV fg) AN (fl V xa V ifg)
> Associate nodes in graph with literals (> 2 per variable).

» If v(z;) = 1 in assignment, then cannot select some nodes.
» Associate 3 nodes per clause in a gadget.

®
® 6 6 &b
OO 6 e
8%

Satisfiability Proof

2
& &
OO O

o8

Claim Graph has IS of size n 4+ m if and only if formula satisfiable.

» If formula satisfiable, select correct literal on the left and one per
clause on the right.

> If graph has IS,

» At most one node per clause on the right
» At most one node per variable on the left.
> If node selected in clause, its negation cannot be selected.

