	Recap
CMPSCI 311: Introduction to Algorithms Lecture 19: Reductions and Intractability Akshay Krishnamurthy University of Massachusetts	 Reductions. Y ≤_P X if can solve Y in poly-time with algorithm for X. New problems. INDEPENDENTSET, VERTEXCOVER, SETCOVER, SAT, 3-SAT. Results. 3-SAT ≤_P IS ≤_P VC ≤_P SC VC ≤_P IS
Reduction #3: Satisfiability	Reduction #3: Satisfiability
 Let X = {x₁,,x_n} be boolean variables A term or literal is x_i or ¬x_i. A clause is or of several terms (t₁ ∨ t₂ ∨ ∨ t_ℓ). A formula is and of several clauses An assignment φ : X → {0, 1} gives T/F to each variable. φ satisfies formula if all clauses evaluate to True. Example. (x₁ ∨ ¬x₂) ∧ (x₁ ∨ x₄ ∨ ¬x₃) ∧ (¬x₁ ∨ x₄) ∧ (x₃ ∨ x₂) 	SAT – Given boolean formula $C_1 \wedge C_2 \dots \wedge C_m$ over variables $X = \{x_1, \dots, x_n\}$, does there exist a satisfying assignment? 3-SAT – Given boolean formula $C_1 \wedge C_2 \dots \wedge C_m$ over variables $X = \{x_1, \dots, x_n\}$ where each C_i has three literals, does there exist a satisfying assignment? Theorem. 3-SAT \leq_P INDEPENDENTSET.
Reduction	Formally
$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$ • Associate nodes in graph with literals (≥ 2 per variable). • Associate 3 nodes per clause in a <i>gadget</i> . • If $\phi(x_i) = 1$ in assignment, then cannot select some nodes. $(x_1 - x_1) + (x_2 - \neg x_2) + (x_3 - \neg x_3) + (x_3 - \neg x_$	 Given {x₁,,x_n} and clauses C₁,,C_m. Make graph with: Vertices v_{i1}, v_{i0} and t_{j1}, t_{j2}, t_{j3} for i ∈ [n], j ∈ [m]. Edges (v_{i1}, v_{i0}) for all i and (t_{jk}, t_{jk'}) for k, k' ∈ [3]. If jth clause is x_a ∨ ¬x_b ∨ x_c, edges (t_{j1}, v_{a0}), (t_{j2}, v_{b1}), (t_{j3}, v_{c0}). If G has IS of size n + m, output TRUE, else FALSE.

Satisfiability Proof	Satisfiability Proof
$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$ $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$ $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$ $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$ $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$ $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$ $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$ Claim. Reduction takes polynomial time. Claim. Graph has IS of size $n + m$ if and only if formula satisfiable.	 If satisfiable, exists φ : X → {0,1} such that C_j(φ) = 1 for all j. If φ(x_i) = 1 select v_{i1} in IS, else select v_{i0}. For C_j there must be a term corresponding to true literal. If term is x_i, it connects to v_{i0} but we know φ(x_i) = 1, so v_{i0} is not selected and we can select this term without conflict. If graph has IS of size n + m, At most one of v_{i0}, v_{i1} and at most one of t_{j1}, t_{j2}, t_{j3}. If select v_{i0}, will never select term corresponding to x_i. Hence cannot use x_i in one clause and ¬x_i in another.
3-SAT Reduction	A class of problems
 Theorem. 3-SAT ≤_P INDEPENDENTSET For every 3-SAT formula, exists a graph G s.t. formula satisfiable if and only if G has IS of size n + m. Does not imply INDEPENDENTSET ≤_P 3-SAT. For this, need to prove: For every (G, k), exists formula that is satisfiable iff G has IS of size k. 	 Decision vs certification. Seems hard to find a large independent set. Or check if one exists. But <i>easy</i> to certify a proposed solution, by checking for adjacent vertices. Formal languages and decision problems. Encode problem inputs as binary strings s. A decision problem X is the set of binary strings that have TRUE answer. Algorithm A solves problem X if A(s) = TRUE iff s ∈ X.
Certification and NP.	P and NP
 Algorithm A solves problem X if A(s) = TRUE iff s ∈ X. Running time now measured in s , still want polytime. P: problems that can be solved by a polytime algorithm. B is a polytime certifier for problem X if B is a polytime algorithm of two inputs s, t. s ∈ X iff exists t with t ≤ poly(s) and B(s, t) = TRUE. Example. Certifier for independent set. NP: problems with polytime certifier. 	Claim. $\mathcal{P} \subset \mathcal{NP}$. Proof. • If $X \in \mathcal{P}$, exists algorithm A that solves X . • Need to design certifier B . • Set $B(s,t) = A(s)$. • B runs in polynomial time • If $s \in X$, $B(s,t) = A(s) = \text{TRUE}$ for all t . • If $s \notin X$, $B(s,t) = A(s) = \text{FALSE}$ for all t .

Some NP problems.	Million dollar question
 INDEPENDENTSET VERTEXCOVER SETCOVER Basically all problems we have seen so far! UNSATISFIABILITY - not in NP. 	 Question. Does P = NP? Can make some progress by considering "hardest" NP problems. Definition. X is NP-Complete if X ∈ NP and for all Y ∈ NP Y ≤_P X. If X is NP-Complete then X has poly-time algorithm iff P = NP.
 CIRCUIT-SAT Problem. Given a boolean circuit with some inputs and single boolean output, are there inputs that produce 1 at the output? A circuit is a labeled DAG. Sources (no incoming edges) labeled with constant or with input variable name. Other nodes labeled with ∧ (and), ∨ (or), ¬ (not). Single node with no outgoing edges computes the output bit. 	CIRCUIT-SATTheorem. CIRCUIT-SAT is NP-Complete.Proof (Idea).• A poly-time algorithm once input length is fixed can be executed on a poly-sized circuit.• Not surprising since our hardware is circuits!• Not surprising since our hardware is circuits!• Need to show that arbitrary $X \in \mathcal{NP}$ has $X \leq_P$ CIRCUIT-SAT.• All we know about X is its efficient certifier $B(\cdot, \cdot)$.• Encode $B(s, \cdot)$ as a circuit with $poly(s)$ inputs.• Satisfiable iff exists t with $ t \leq poly(s)$ s.t. $B(s, t) = \text{TRUE}$ iff $s \in X$.
A CIRCUIT-SAT reduction Independent set on 3 nodes clique:	Back to 3-SAT Claim. If Y is NP-complete and $Y \leq_P X$, then X is NP-complete. Theorem. 3-SAT is NP-Complete. • Clearly in \mathcal{NP} . • Prove by reduction from CIRCUITSAT. Example. $(2 \longrightarrow \bigcirc $

The Reduction Final steps • One variable x_v per circuit node v. ► This formula satisfiable iff circuit is satisfiable. Clauses to enforce circuit computations. • If v is \neg then v has one input u and can add clauses But not a 3-sat formula! It has clauses of size 1 and 2. $(x_v \lor x_u), (\neg x_v \lor \neg x_u).$ Fix: 4 new variables z_1, \ldots, z_4 where z_1, z_2 forced to be 0. \blacktriangleright If v is \lor with u,w incoming then Include those two in any short clause. $(x_v \vee \neg x_u), (x_v \vee \neg x_w), (\neg x_v \vee x_u \vee x_w).$ • If v is \wedge then $(\neg x_v \lor x_u), (\neg x_v \lor x_w), (x_v \lor \neg x_u \lor \neg x_w).$ Theorem. INDEPENDENTSET, VERTEXCOVER, SETCOVER, SAT, 3-SAT are all NP-Complete. • Input bits get set with (x_v) if fixed to one and $(\neg x_v)$ otherwise. ▶ Clause (*x_o*) for output bit.