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Recap

I Reductions. Y ≤P X if can solve Y in poly-time with algorithm
for X.

I New problems. IndependentSet, VertexCover,
SetCover, SAT, 3-SAT.

I Results.

3-SAT ≤P IS ≤P VC ≤P SC
VC ≤P IS

Reduction #3: Satisfiability

I Let X = {x1, . . . , xn} be boolean variables
I A term or literal is xi or ¬xi.
I A clause is or of several terms (t1 ∨ t2 ∨ . . . ∨ t`).
I A formula is and of several clauses
I An assignment φ : X → {0, 1} gives T/F to each variable.

I φ satisfies formula if all clauses evaluate to True.

Example.

(x1 ∨ ¬x2) ∧ (x1 ∨ x4 ∨ ¬x3) ∧ (¬x1 ∨ x4) ∧ (x3 ∨ x2)

Reduction #3: Satisfiability

SAT – Given boolean formula C1 ∧ C2 . . . ∧ Cm over variables
X = {x1, . . . , xn}, does there exist a satisfying assignment?

3-SAT – Given boolean formula C1 ∧ C2 . . . ∧ Cm over variables
X = {x1, . . . , xn} where each Ci has three literals, does there exist
a satisfying assignment?

Theorem. 3-SAT ≤P IndependentSet.

Reduction

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

I Associate nodes in graph with literals (≥ 2 per variable).
I Associate 3 nodes per clause in a gadget.
I If φ(xi) = 1 in assignment, then cannot select some nodes.

x1 ¬x1 x2 ¬x2 x3 ¬x3

x1 x2

¬x3

¬x1 ¬x2

¬x3

Formally

I Given {x1, . . . , xn} and clauses C1, . . . , Cm.

I Make graph with:
I Vertices vi1, vi0 and tj1, tj2, tj3 for i ∈ [n], j ∈ [m].
I Edges (vi1, vi0) for all i and (tjk, tjk′) for k, k′ ∈ [3].
I If jth clause is xa ∨ ¬xb ∨ xc, edges

(tj1, va0), (tj2, vb1), (tj3, vc0).

I If G has IS of size n+m, output True, else False.



Satisfiability Proof

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

x1 ¬x1 x2 ¬x2 x3 ¬x3

x1 x2

¬x3

¬x1 ¬x2

¬x3

Claim. Reduction takes polynomial time.
Claim. Graph has IS of size n+m if and only if formula satisfiable.

Satisfiability Proof

I If satisfiable, exists φ : X → {0, 1} such that Cj(φ) = 1 for all j.

I If φ(xi) = 1 select vi1 in IS, else select vi0.

I For Cj there must be a term corresponding to true literal.
I If term is xi, it connects to vi0 but we know φ(xi) = 1, so vi0

is not selected and we can select this term without conflict.

I If graph has IS of size n+m,
I At most one of vi0, vi1 and at most one of tj1, tj2, tj3.
I If select vi0, will never select term corresponding to xi.
I Hence cannot use xi in one clause and ¬xi in another.

3-SAT Reduction

Theorem. 3-SAT ≤P IndependentSet

I For every 3-SAT formula, exists a graph G s.t. formula satisfiable
if and only if G has IS of size n+m.

I Does not imply IndependentSet ≤P 3-SAT.
I For this, need to prove: For every (G, k), exists formula that is

satisfiable iff G has IS of size k.

A class of problems

I Decision vs certification.
I Seems hard to find a large independent set.

I Or check if one exists.
I But easy to certify a proposed solution, by checking for

adjacent vertices.

I Formal languages and decision problems.
I Encode problem inputs as binary strings s.
I A decision problem X is the set of binary strings that have

true answer.
I Algorithm A solves problem X if A(s) = true iff s ∈ X.

Certification and NP.

I Algorithm A solves problem X if A(s) = true iff s ∈ X.

I Running time now measured in |s|, still want polytime.

I P: problems that can be solved by a polytime algorithm.

I B is a polytime certifier for problem X if
I B is a polytime algorithm of two inputs s, t.
I s ∈ X iff exists t with |t| ≤ poly(|s|) and B(s, t) = true.
I Example. Certifier for independent set.

I NP: problems with polytime certifier.

P and NP

Claim. P ⊂ NP.

Proof.

I If X ∈ P, exists algorithm A that solves X.

I Need to design certifier B.
I Set B(s, t) = A(s).
I B runs in polynomial time
I If s ∈ X, B(s, t) = A(s) = True for all t.
I If s /∈ X, B(s, t) = A(s) = False for all t.



Some NP problems.

I IndependentSet

I VertexCover

I SetCover

I Basically all problems we have seen so far!

I Unsatisfiability – not in NP.

Million dollar question

Question. Does P = NP?
Can make some progress by considering “hardest” NP problems.
Definition. X is NP-Complete if X ∈ NP and for all Y ∈ NP
Y ≤P X.

I If X is NP-Complete then X has poly-time algorithm iff
P = NP.

Circuit-SAT
Problem. Given a boolean circuit with some inputs and single
boolean output, are there inputs that produce 1 at the output?
I A circuit is a labeled DAG.

I Sources (no incoming edges) labeled with constant or with input
variable name.

I Other nodes labeled with ∧ (and), ∨ (or), ¬ (not).

I Single node with no outgoing edges computes the output bit.

Circuit-SAT

Theorem. Circuit-SAT is NP-Complete.
Proof (Idea).

I A poly-time algorithm once input length is fixed can be executed
on a poly-sized circuit.

I Not surprising since our hardware is circuits!

I Need to show that arbitrary X ∈ NP has X ≤P Circuit-SAT.

I All we know about X is its efficient certifier B(·, ·).
I Encode B(s, ·) as a circuit with poly(|s|) inputs.

I Satisfiable iff exists t with |t| ≤ poly(|s|) s.t. B(s, t) = true
iff s ∈ X.

A Circuit-SAT reduction
Independent set on 3 nodes clique:

Back to 3-SAT

Claim. If Y is NP-complete and Y ≤P X, then X is NP-complete.
Theorem. 3-SAT is NP-Complete.

I Clearly in NP.
I Prove by reduction from CircuitSAT.

Example.
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The Reduction

I One variable xv per circuit node v.

I Clauses to enforce circuit computations.
I If v is ¬ then v has one input u and can add clauses

(xv ∨ xu), (¬xv ∨ ¬xu).
I If v is ∨ with u,w incoming then

(xv ∨ ¬xu), (xv ∨ ¬xw), (¬xv ∨ xu ∨ xw).
I If v is ∧ then (¬xv ∨ xu), (¬xv ∨ xw), (xv ∨ ¬xu ∨ ¬xw).

I Input bits get set with (xv) if fixed to one and (¬xv) otherwise.

I Clause (xo) for output bit.

Final steps

I This formula satisfiable iff circuit is satisfiable.

I But not a 3-sat formula! It has clauses of size 1 and 2.
I Fix: 4 new variables z1, . . . , z4 where z1, z2 forced to be 0.
I Include those two in any short clause.

Theorem. IndependentSet, VertexCover, SetCover,
SAT, 3-SAT are all NP-Complete.


