CMPSCI 311: Introduction to Algorithms
Lecture 19: Reductions and Intractability
Akshay Krishnamurthy
University of Massachusetts
Last Compiled: Apiil 18, 2018

Recap

- Reductions. $Y \leq_{P} X$ if can solve Y in poly-time with algorithm for X.
- New problems. IndependentSet, VertexCover, SetCover, SAT, 3-SAT.
- Results.

$$
\begin{gathered}
3-\mathrm{SAT} \leq_{P} \mathrm{IS} \leq_{P} \mathrm{VC} \leq_{P} \mathrm{SC} \\
\mathrm{VC} \leq_{P} \mathrm{IS}
\end{gathered}
$$

Reduction \#3: Satisfiability

SAT - Given boolean formula $C_{1} \wedge C_{2} \ldots \wedge C_{m}$ over variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$, does there exist a satisfying assignment?

3-SAT - Given boolean formula $C_{1} \wedge C_{2} \ldots \wedge C_{m}$ over variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$ where each C_{i} has three literals, does there exist a satisfying assignment?

Theorem. 3 -SAT \leq_{P} IndependentSet.

Reduction

$$
\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)
$$

- Associate nodes in graph with literals (≥ 2 per variable).
- Associate 3 nodes per clause in a gadget.
- If $\phi\left(x_{i}\right)=1$ in assignment, then cannot select some nodes.

Formally

- Given $\left\{x_{1}, \ldots, x_{n}\right\}$ and clauses C_{1}, \ldots, C_{m}.
- Make graph with:
- Vertices $v_{i 1}, v_{i 0}$ and $t_{j 1}, t_{j 2}, t_{j 3}$ for $i \in[n], j \in[m]$.
- Edges $\left(v_{i 1}, v_{i 0}\right)$ for all i and $\left(t_{j k}, t_{j k^{\prime}}\right)$ for $k, k^{\prime} \in[3]$.
- If j th clause is $x_{a} \vee \neg x_{b} \vee x_{c}$, edges
$\left(t_{j 1}, v_{a 0}\right),\left(t_{j 2}, v_{b 1}\right),\left(t_{j 3}, v_{c 0}\right)$.
- If G has IS of size $n+m$, output True, else False.

Satisfiability Proof

Claim. Reduction takes polynomial time.
Claim. Graph has IS of size $n+m$ if and only if formula satisfiable.

3-SAT Reduction

Theorem. 3-SAT \leq_{P} IndependentSet

- For every 3-SAT formula, exists a graph G s.t. formula satisfiable if and only if G has IS of size $n+m$.
- Does not imply IndependentSet $\leq_{P} 3$-SAT.
- For this, need to prove: For every (G, k), exists formula that is satisfiable iff G has IS of size k.

Satisfiability Proof

- If satisfiable, exists $\phi: X \rightarrow\{0,1\}$ such that $C_{j}(\phi)=1$ for all j.
- If $\phi\left(x_{i}\right)=1$ select $v_{i 1}$ in IS, else select $v_{i 0}$.
- For C_{j} there must be a term corresponding to true literal.
- If term is x_{i}, it connects to $v_{i 0}$ but we know $\phi\left(x_{i}\right)=1$, so $v_{i 0}$ is not selected and we can select this term without conflict.
- If graph has IS of size $n+m$,
- At most one of $v_{i 0}, v_{i 1}$ and at most one of $t_{j 1}, t_{j 2}, t_{j 3}$.
- If select $v_{i 0}$, will never select term corresponding to x_{i}.
- Hence cannot use x_{i} in one clause and $\neg x_{i}$ in another.

A class of problems

- Decision vs certification.
- Seems hard to find a large independent set.
- Or check if one exists.
- But easy to certify a proposed solution, by checking for adjacent vertices.
- Formal languages and decision problems.
- Encode problem inputs as binary strings s.
- A decision problem X is the set of binary strings that have TRUE answer.
- Algorithm A solves problem X if $A(s)=$ TRUE iff $s \in X$.

P and NP

Claim. $\mathcal{P} \subset \mathcal{N P}$.

Proof.

- If $X \in \mathcal{P}$, exists algorithm A that solves X.
- Need to design certifier B.
- Set $B(s, t)=A(s)$.
- B runs in polynomial time
- If $s \in X, B(s, t)=A(s)=$ True for all t.
- If $s \notin X, B(s, t)=A(s)=$ False for all t.

Some NP problems.

- IndependentSet
- VertexCover
- SetCover
- Basically all problems we have seen so far!
- Unsatisfiability - not in $\mathcal{N} \mathcal{P}$

Million dollar question

Question. Does $\mathcal{P}=\mathcal{N} \mathcal{P}$?
Can make some progress by considering "hardest" $\mathcal{N} \mathcal{P}$ problems.
Definition. X is NP-Complete if $X \in \mathcal{N} \mathcal{P}$ and for all $Y \in \mathcal{N P}$ $Y \leq_{P} X$.

- If X is NP-Complete then X has poly-time algorithm iff $\mathcal{P}=\mathcal{N} \mathcal{P}$.

Circuit-SAT

Theorem. Circuit-SAT is NP-Complete.

Proof (Idea).

- A poly-time algorithm once input length is fixed can be executed on a poly-sized circuit.
- Not surprising since our hardware is circuits!
- Need to show that arbitrary $X \in \mathcal{N} \mathcal{P}$ has $X \leq_{P}$ Circuit-SAT.
- All we know about X is its efficient certifier $B(\cdot, \cdot)$.
- Encode $B(s, \cdot)$ as a circuit with poly $(|s|)$ inputs.
- Satisfiable iff exists t with $|t| \leq \operatorname{poly}(|s|)$ s.t. $B(s, t)=$ TRUE iff $s \in X$.

Back to 3-SAT

Claim. If Y is NP-complete and $Y \leq_{P} X$, then X is NP-complete.
Theorem. 3-SAT is NP-Complete.

- Clearly in $\mathcal{N} \mathcal{P}$.
- Prove by reduction from CircuitSAT.

Example.

The Reduction

- One variable x_{v} per circuit node v.
- Clauses to enforce circuit computations.
- If v is \neg then v has one input u and can add clauses $\left(x_{v} \vee x_{u}\right),\left(\neg x_{v} \vee \neg x_{u}\right)$.
- If v is \vee with u, w incoming then
$\left(x_{v} \vee \neg x_{u}\right),\left(x_{v} \vee \neg x_{w}\right),\left(\neg x_{v} \vee x_{u} \vee x_{w}\right)$.
- If v is \wedge then $\left(\neg x_{v} \vee x_{u}\right),\left(\neg x_{v} \vee x_{w}\right),\left(x_{v} \vee \neg x_{u} \vee \neg x_{w}\right)$.
- Input bits get set with $\left(x_{v}\right)$ if fixed to one and $\left(\neg x_{v}\right)$ otherwise.
- Clause $\left(x_{o}\right)$ for output bit.

Final steps

- This formula satisfiable iff circuit is satisfiable.
- But not a 3-sat formula! It has clauses of size 1 and 2.
- Fix: 4 new variables z_{1}, \ldots, z_{4} where z_{1}, z_{2} forced to be 0 .
- Include those two in any short clause.

Theorem. IndependentSet, VertexCover, SetCover, SAT, 3-SAT are all NP-Complete.

