	Announcements:
CMPSCI 311: Introduction to Algorithms Lecture 2: Asymptotic Notation and Efficiency Akshay Krishnamurthy University of Massachusetts	 Homework 1 released (website, Moodle, Gradescope) No discussion on Friday Quiz 1 out on Friday
Recap: Stable Matching	Big-O: Motivation What is the running time of this algorithm? How many "primitive steps" are executed for an input of size <i>n</i> ?
 Given n students and n colleges, each with preferences over the other. Can we find a stable matching? Stability: Don't want to match c with s and c' with s' if c and s' would prefer to switch to being matched with each other. Yes! Propose and Reject Algorithm. Algorithm terminates in n² iterations Everyone gets matched Resulting matching is stable! 	sum = 0 for $i = 1$ to n do for $j = 1$ to n do sum $+= A[i]^*A[j]$ end for end for The running time is $T(n) = 3n^2 + n + 1$. For large values of n , $T(n)$ is <i>less</i> than some multiple of n^2 . We say
Big-O: Formal Definition	$T(n)$ is $O(n^2)$ and we typically don't care about other terms. Properties of Big-O Notation
Definition : The function $T(n)$ is $O(f(n))$ if there exist constants $c \ge 0$ and $n_0 \ge 0$ such that $T(n) \le cf(n)$ for all $n \ge n_0$ We say that f is an asymptotic upper bound for T . Examples : If $T(n) = n^2 + 100000n$ then $T(n)$ is $O(n^2)$ If $T(n) = n^3 + n \log n$ then $T(n)$ is $O(n^3)$ If $T(n) = 2^{\sqrt{\log n}}$ then $T(n)$ is $O(n)$ If $T(n) = n^3$ then $T(n)$ is $O(n^4)$ but it's also $O(n^3)$, $O(n^5)$ etc.	Claim (Transitivity): If f is $O(g)$ and g is $O(h)$, then f is $O(h)$. Claims (Additivity): If f is $O(h)$ and g is $O(h)$, then $f + g$ is $O(h)$. If f_1, f_2, \ldots, f_k are each $O(h)$, then $f_1 + f_2 + \ldots + f_k$ is $O(h)$. If f is $O(g)$, then $f + g$ is $O(g)$. We'll go through a couple of examples

Big-Ω	Exercise review
Exercise: let $T(n)$ be the running time of sum-product. Show that $T(n)$ is $\Omega(n^2)$ Algorithm sum-product sum = 0 for $i=1$ to n do for $j=i$ to n do sum $+= A[i]^*A[j]$ end for end for Do on board: easy way and hard way	Hard way • Count exactly how many times the loop executes $1+2+\ldots+n=\frac{n(n+1)}{2}=\Omega(n^2)$ Easy way • Ignore all loop executions where $i>n/2$ or $j< n/2$ • The inner statement executes at least $(n/2)^2=\Omega(n^2)$ times
Big-O	Big-⊖ example
Definition : the function $T(n)$ is $\Theta(f(n))$ if it is both $O(f(n))$ and $\Omega(f(n))$. f is an asymptotically tight bound of T	How do we correctly compare the running time of these algorithms? Algorithm bar Algorithm foo for $i = 1$ to n do for $i = 1$ to n do for $j = 1$ to n do for $j = 1$ to n do for $k = 1$ to n do do something end for end for end for end for end for Answer: foo is $\Theta(n^2)$ and bar is $\Theta(n^3)$. They do not have the same asymptotic running time.
Additivity Revisited	Algorithm design
Suppose f and g are two (non-negative) functions and f is $O(g)$ Old version: Then $f + g$ is $O(g)$ New version: Then $f + g$ is $\Theta(g)$ Example: $\underbrace{n^2_g}_{g} + \underbrace{42n + n \log n}_{f}$ is $\Theta(n^2)$	 Formulate the problem precisely Design an algorithm to solve the problem Prove the algorithm is correct Analyze the algorithm's running time # Running Time Analysis (K&T, Ch. 2) What is efficiency? Mathematical foundations: asymptotic growth of functions, big-O and friends Skills: analyze big-O running time of algorithms

Approach	Notions of Efficiency
 Mathematical analysis of worst-case running time of an algorithm as function of input size. Why these choices? Mathematical: describes the <i>algorithm</i>. Avoids hard-to-control experimental factors (CPU, programming language, quality of implementation) Worst-case: just works. ("average case" appealing, but hard to analyze) Function of input size: allows predictions. What will happen on a new input? 	When is an algorithm efficient? Consider stable matching Brute force: $O(n!)$ Gale-Shapley?: $O(n^2)$ We must have done something clever Question: Is it $\Omega(n^2)$?
Polynomial Time	Polynomial Time
Working definition of efficient Definition : an algorithm runs in polynomial time if the number of primitive execution steps is at most cn^d , where n is the input size and c and d are constants.	Examples of polynomial time: $f_1(n) = n$ $f_2(n) = 4n + 100$ $f_3(n) = n \log(n) + 2n + 20$ $f_4(n) = 0.01n^2$ $f_5(n) = n^2$ $f_6(n) = 20n^2 + 2n + 3$ Not polynomial time: $f_7(n) = 2^n$ $f_8(n) = 3^n$ $f_9(n) = n!$
Polynomial Time	
Why is this a good definition of efficiency?Matches practice: almost all practically efficient algorithms have this property	
 Usually distinguishes a clever algorithm from a "brute force" approach 	
Defutebles gives up a way of acting an electric terrate of the t	

► Refutable: gives us a way of saying an algorithm is not efficient, or that no efficient algorithm exists.