CMPSCI 311: Introduction to Algorithms
Lecture 2: Asymptotic Notation and Efficiency
Akshay Krishnamurthy
University of Massachusetts
Last Compiled: January 24, 2018

Recap: Stable Matching

- Given n students and n colleges, each with preferences over the other. Can we find a stable matching?
- Stability: Don't want to match c with s and c^{\prime} with s^{\prime} if c and s^{\prime} would prefer to switch to being matched with each other.
- Yes! Propose and Reject Algorithm.
- Algorithm terminates in n^{2} iterations
- Everyone gets matched
- Resulting matching is stable!

Announcements:

- Homework 1 released (website, Moodle, Gradescope)
- No discussion on Friday
- Quiz 1 out on Friday

Big-O: Motivation

What is the running time of this algorithm? How many "primitive steps" are executed for an input of size n ?

$$
\begin{aligned}
& \text { sum }=0 \\
& \text { for } i=1 \text { to } n \text { do } \\
& \text { for } j=1 \text { to } n \text { do } \\
& \quad \text { sum }+=A[i]^{*} A[j] \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

The running time is

$$
T(n)=3 n^{2}+n+1
$$

For large values of $n, T(n)$ is less than some multiple of n^{2}. We say $T(n)$ is $O\left(n^{2}\right)$ and we typically don't care about other terms.

Properties of Big-O Notation

Claim (Transitivity): If f is $O(g)$ and g is $O(h)$, then f is $O(h)$.

Claims (Additivity):

- If f is $O(h)$ and g is $O(h)$, then $f+g$ is $O(h)$.
- If $f_{1}, f_{2}, \ldots, f_{k}$ are each $O(h)$, then $f_{1}+f_{2}+\ldots+f_{k}$ is $O(h)$.
- If f is $O(g)$, then $f+g$ is $O(g)$.

We'll go through a couple of examples. . .

Consequences of Additivity

- OK to drop lower order terms. E.g., if

$$
f(n)=4.1 n^{3}+23 n+n \log n
$$

then $f(n)$ is $O\left(n^{3}\right)$

- Polynomials: Only highest degree term matters. E.g., if

$$
f(n)=a_{0}+a_{1} n+a_{2} n^{2}+\ldots+a_{d} n^{d}, \quad a_{d}>0
$$

then $f(n)$ is $O\left(n^{d}\right)$

Logarithm review

Definition: $\log _{b}(a)$ is the unique number c such that $b^{c}=a$
Informally: the number of times you can divide a into b parts until each part has size one

- $\log (x y)=\log x+\log y$
- $\log \left(x^{k}\right)=k \log x$
- $\log _{b}\left(b^{n}\right)=n$
- $b^{\log _{b}(n)}=n$
- $\log _{a}(n)=\frac{\log _{b}(n)}{\log _{b}(a)}$

Logarithm review
Definition: $\log _{b}(a)$ is the unique number c such that $b^{c}=a$ Informally: the number of times you can divide a into b parts until each part has size one - $\log (x y)=\log x+\log y$ - $\log \left(x^{k}\right)=k \log x$ - $\log _{b}\left(b^{n}\right)=n$ - $b^{\log _{b}(n)}=n$ - $\log _{a}(n)=\frac{\log _{b}(n)}{\log _{b}(a)}$

Other Useful Facts: Log vs. Poly vs. Exp

Fact: $\log _{b}(n)$ is $O\left(n^{d}\right)$ for all b and d
All polynomials grow faster than logarithm of any base

Fact: n^{d} is $O\left(r^{n}\right)$ when $r>1$
Exponential functions grow faster than polynomials
Challenge problem: Prove these facts!

More Big- Ω Motivation

Algorithm sum-product

```
sum \(=0\)
    for \(i=1\) to \(n\) do
        for \(j=i\) to \(n\) do
            sum \(+=A[i]^{*} A[j]\)
        end for
    end for
```

What is the running time of sum-product?
Easy to see it is $O\left(n^{2}\right)$. Could it be better? $O(n)$?

Big- Ω Motivation

```
Algorithm foo
    for \(i=1\) to \(n\) do
            for \(j=1\) to \(n\) do
            do something...
        end for
    end for
```

Fact: run time is $O\left(n^{3}\right)$

Conclusion: foo and bar have the same asymptotic running time. What is wrong?

Big- Ω

Informally: T grows at least as fast as f

Definition: The function $T(n)$ is $\Omega(f(n))$ if there exist constants $c \geq 0$ and $n_{0} \geq 0$ such that

$$
T(n) \geq c f(n) \text { for all } n \geq n_{0}
$$

f is an asymptotic lower bound for T

$\operatorname{Big}-\Omega$

Exercise: let $T(n)$ be the running time of sum-product. Show that $T(n)$ is $\Omega\left(n^{2}\right)$

Algorithm sum-product

sum $=0$
for $i=1$ to n do
for $j=i$ to n do sum $+=A[i]^{*} A[j]$
end for
end for
Do on board: easy way and hard way

Big- Θ

Definition: the function $T(n)$ is $\Theta(f(n))$ if it is both $O(f(n))$ and $\Omega(f(n))$
f is an asymptotically tight bound of T

Exercise review

Hard way

- Count exactly how many times the loop executes

$$
1+2+\ldots+n=\frac{n(n+1)}{2}=\Omega\left(n^{2}\right)
$$

Easy way

- Ignore all loop executions where $i>n / 2$ or $j<n / 2$
- The inner statement executes at least $(n / 2)^{2}=\Omega\left(n^{2}\right)$ times

Big $-\Theta$ example

How do we correctly compare the running time of these algorithms?

	Algorithm bar Algorithm foo for $i=1$ to n do
for $i=1$ to n do	for $j=1$ to n do
for $j=1$ to n do	for $k=1$ to n do
do something...	do something else..
end for	end for
end for	end for
end for	

Answer: foo is $\Theta\left(n^{2}\right)$ and bar is $\Theta\left(n^{3}\right)$. They do not have the same asymptotic running time.

Additivity Revisited

Suppose f and g are two (non-negative) functions and f is $O(g)$
Old version: Then $f+g$ is $O(g)$
New version: Then $f+g$ is $\Theta(g)$
Example:

$$
\underbrace{n^{2}}_{g}+\underbrace{42 n+n \log n}_{f} \text { is } \Theta\left(n^{2}\right)
$$

Algorithm design

- Formulate the problem precisely
- Design an algorithm to solve the problem
- Prove the algorithm is correct
- Analyze the algorithm's running time \# Running Time Analysis (K\&T, Ch. 2)
-What is efficiency?
- Mathematical foundations: asymptotic growth of functions, big-O and friends
- Skills: analyze big-O running time of algorithms
Approach
Mathematical analysis of worst-case running time of an algorithm as
function of input size. Why these choices?
- Mathematical: describes the algorithm. Avoids hard-to-control
experimental factors (CPU, programming language, quality of
implementation)
- Worst-case: just works. ("average case" appealing, but hard to
analyze)
- Function of input size: allows predictions. What will happen on a
new input?

Notions of Efficiency

When is an algorithm efficient? Consider stable matching...
Brute force: $O(n!)$
Gale-Shapley?: $O\left(n^{2}\right)$
We must have done something clever
Question: Is it $\Omega\left(n^{2}\right)$?
Polynomial Time
Working definition of efficient

Definition: an algorithm runs in polynomial time if the number of
primitive execution steps is at most $c n^{d}$, where n is the input size
and c and d are constants.

Polynomial Time

Examples of polynomial time:
$f_{1}(n)=n$
$f_{2}(n)=4 n+100$
$f_{3}(n)=n \log (n)+2 n+20$
$f_{4}(n)=0.01 n^{2}$
$f_{5}(n)=n^{2}$
$f_{6}(n)=20 n^{2}+2 n+3$
Not polynomial time:
$f_{7}(n)=2^{n}$
$f_{8}(n)=3^{n}$
$f_{9}(n)=n!$

Polynomial Time

Why is this a good definition of efficiency?

- Matches practice: almost all practically efficient algorithms have this property
- Usually distinguishes a clever algorithm from a "brute force" approach
- Refutable: gives us a way of saying an algorithm is not efficient, or that no efficient algorithm exists.

