
CMPSCI 311: Introduction to Algorithms
Lecture 2: Asymptotic Notation and Efficiency

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: January 24, 2018

Announcements:

I Homework 1 released (website, Moodle, Gradescope)

I No discussion on Friday

I Quiz 1 out on Friday

Recap: Stable Matching

I Given n students and n colleges, each with preferences over the
other. Can we find a stable matching?
I Stability: Don’t want to match c with s and c′ with s′ if c and

s′ would prefer to switch to being matched with each other.

I Yes! Propose and Reject Algorithm.
I Algorithm terminates in n2 iterations
I Everyone gets matched
I Resulting matching is stable!

Big-O: Motivation
What is the running time of this algorithm? How many “primitive
steps” are executed for an input of size n?

sum = 0
for i= 1 to n do

for j= 1 to n do
sum += A[i]*A[j]

end for
end for

The running time is

T (n) = 3n2 + n + 1 .

For large values of n, T (n) is less than some multiple of n2. We say
T (n) is O(n2) and we typically don’t care about other terms.

Big-O: Formal Definition

Definition: The function T (n) is O(f(n)) if there exist constants
c ≥ 0 and n0 ≥ 0 such that

T (n) ≤ cf(n) for all n ≥ n0

We say that f is an asymptotic upper bound for T .

Examples:

I If T (n) = n2 + 1000000n then T (n) is O(n2)

I If T (n) = n3 + n log n then T (n) is O(n3)

I If T (n) = 2
√

log n then T (n) is O(n)

I If T (n) = n3 then T (n) is O(n4) but it’s also O(n3), O(n5) etc.

Properties of Big-O Notation

Claim (Transitivity): If f is O(g) and g is O(h), then f is O(h).

Claims (Additivity):

I If f is O(h) and g is O(h), then f + g is O(h).

I If f1, f2, . . . , fk are each O(h), then f1 + f2 + . . . + fk is O(h).

I If f is O(g), then f + g is O(g).

We’ll go through a couple of examples. . .



Consequences of Additivity

I OK to drop lower order terms. E.g., if

f(n) = 4.1n3 + 23n + n log n

then f(n) is O(n3)

I Polynomials: Only highest degree term matters. E.g., if

f(n) = a0 + a1n + a2n2 + . . . + adnd, ad > 0

then f(n) is O(nd)

Other Useful Facts: Log vs. Poly vs. Exp

Fact: logb(n) is O(nd) for all b and d

All polynomials grow faster than logarithm of any base

Fact: nd is O(rn) when r > 1

Exponential functions grow faster than polynomials
Challenge problem: Prove these facts!

Logarithm review

Definition: logb(a) is the unique number c such that bc = a

Informally: the number of times you can divide a into b parts until
each part has size one

I log(xy) = log x + log y
I log(xk) = k log x
I logb(bn) = n
I blogb(n) = n
I loga(n) = logb(n)

logb(a)

Big-Ω Motivation

Algorithm foo
for i= 1 to n do

for j= 1 to n do
do something...

end for
end for

Fact: run time is O(n3)

Algorithm bar
for i= 1 to n do

for j= 1 to n do
for k= 1 to n do

do something else..
end for

end for
end for

Fact: run time is O(n3)

Conclusion: foo and bar have the same asymptotic running time.
What is wrong?

More Big-Ω Motivation

Algorithm sum-product
sum = 0
for i= 1 to n do

for j= i to n do
sum += A[i]*A[j]

end for
end for

What is the running time of sum-product?

Easy to see it is O(n2). Could it be better? O(n)?

Big-Ω

Informally: T grows at least as fast as f

Definition: The function T (n) is Ω(f(n)) if there exist constants
c ≥ 0 and n0 ≥ 0 such that

T (n) ≥ cf(n) for all n ≥ n0

f is an asymptotic lower bound for T



Big-Ω

Exercise: let T (n) be the running time of sum-product. Show that
T (n) is Ω(n2)

Algorithm sum-product
sum = 0
for i= 1 to n do

for j= i to n do
sum += A[i]*A[j]

end for
end for

Do on board: easy way and hard way

Exercise review

Hard way

I Count exactly how many times the loop executes

1 + 2 + . . . + n = n(n + 1)
2 = Ω(n2)

Easy way

I Ignore all loop executions where i > n/2 or j < n/2
I The inner statement executes at least (n/2)2 = Ω(n2) times

Big-Θ

Definition: the function T (n) is Θ(f(n)) if it is both O(f(n)) and
Ω(f(n)).

f is an asymptotically tight bound of T

Big-Θ example

How do we correctly compare the running time of these algorithms?

Algorithm foo
for i= 1 to n do

for j= 1 to n do
do something...

end for
end for

Algorithm bar
for i= 1 to n do

for j= 1 to n do
for k= 1 to n do

do something else..
end for

end for
end for

Answer: foo is Θ(n2) and bar is Θ(n3). They do not have the
same asymptotic running time.

Additivity Revisited

Suppose f and g are two (non-negative) functions and f is O(g)

Old version: Then f + g is O(g)

New version: Then f + g is Θ(g)

Example:
n2

︸︷︷︸
g

+ 42n + n log n︸ ︷︷ ︸
f

is Θ(n2)

Algorithm design

I Formulate the problem precisely

I Design an algorithm to solve the problem

I Prove the algorithm is correct

I Analyze the algorithm’s running time # Running Time Analysis
(K&T, Ch. 2)

I What is efficiency?

I Mathematical foundations: asymptotic growth of functions, big-O
and friends

I Skills: analyze big-O running time of algorithms



Approach

Mathematical analysis of worst-case running time of an algorithm as
function of input size. Why these choices?

I Mathematical: describes the algorithm. Avoids hard-to-control
experimental factors (CPU, programming language, quality of
implementation)

I Worst-case: just works. (“average case” appealing, but hard to
analyze)

I Function of input size: allows predictions. What will happen on a
new input?

Notions of Efficiency

When is an algorithm efficient? Consider stable matching. . .

Brute force: O(n!)
Gale-Shapley?: O(n2)

We must have done something clever
Question: Is it Ω(n2)?

Polynomial Time

Working definition of efficient

Definition: an algorithm runs in polynomial time if the number of
primitive execution steps is at most cnd, where n is the input size
and c and d are constants.

Polynomial Time

Examples of polynomial time:
f1(n) = n
f2(n) = 4n + 100
f3(n) = n log(n) + 2n + 20
f4(n) = 0.01n2

f5(n) = n2

f6(n) = 20n2 + 2n + 3

Not polynomial time:
f7(n) = 2n

f8(n) = 3n

f9(n) = n!

Polynomial Time

Why is this a good definition of efficiency?

I Matches practice: almost all practically efficient algorithms have
this property

I Usually distinguishes a clever algorithm from a “brute force”
approach

I Refutable: gives us a way of saying an algorithm is not efficient,
or that no efficient algorithm exists.


