| CMPSCI 311: Introduction to Algorithms |
| :---: |
| Lecture 20: Reductions and Intractability |
| Akshay Krishnamurthy |
| University of Massachusetts |
| Last Compiled: April 3,2018 |

## Announcements

- Quiz due tonight
- HW 6 due 5/1 (Tuesday night!), and extra credit
- Midterms back on wednesday (Solutions up tonight)
- Last discussion on friday
- Final Exam: Friday 5/4, 3:30-5:30pm, Marcus Hall 131.


## Recap

- Problem $X$ is a set of strings $s$, the YES instances.
- Algorithm $A$ solves $X$ if $A(s)=$ true iff $s \in X$.
- $B$ is polytime certifier for $X$ if
- $B$ is polytime algorithm of two inputs $s$ and $t$ (a hint).
- $s \in X$ iff exists $t$ with $|t| \leq p(|s|)$ and $B(s, t)=$ TruE.
- $\mathcal{P}$ - class of problems with polytime algorithm.
- $\mathcal{N P}$ - class of problems with polytime certifier.
- $X$ is NP-Complete iff $Y \leq_{P} X$ for all $Y \in \mathcal{N} \mathcal{P}$.
- Review 3-SAT $\leq_{P}$ CircuitSat

Plan for today

- HamCycle
- TSP


## Example

| Problem $(X)$ | IndePENDENTSET |
| :--- | :--- |
| Instance $(s)$ | Graph $G$ and number $k$ |
| Algorithm $(A)$ | Try all subsets and check (Runtime?) |
| Hint $(t)$ | Which nodes are in the answer? |
| Certifier $(B)$ | Are those nodes independent and size $k ?$ |

## Back to 3-SAT

Claim. If $Y$ is NP-complete and $Y \leq_{P} X$, then $X$ is NP-complete.
Theorem. 3-SAT is NP-Complete.

- Clearly in $\mathcal{N} \mathcal{P}$.
- Prove by reduction from CircuitSAT.


## Example.

## The Reduction

- One variable $x_{v}$ per circuit node $v$.
- Clauses to enforce circuit computations.
- If $v$ is $\neg$ then $v$ has one input $u$ and can add clauses $\left(x_{v} \vee x_{u}\right),\left(\neg x_{v} \vee \neg x_{u}\right)$.
- If $v$ is $\vee$ with $u, w$ incoming then $\left(x_{v} \vee \neg x_{u}\right),\left(x_{v} \vee \neg x_{w}\right),\left(\neg x_{v} \vee x_{u} \vee x_{w}\right)$.
- If $v$ is $\wedge$ then $\left(\neg x_{v} \vee x_{u}\right),\left(\neg x_{v} \vee x_{w}\right),\left(x_{v} \vee \neg x_{u} \vee \neg x_{w}\right)$.
- Input bits get set with $\left(x_{v}\right)$ if fixed to one and $\left(\neg x_{v}\right)$ otherwise.
- Clause $\left(x_{o}\right)$ for output bit.

Final steps

- This formula satisfiable iff circuit is satisfiable.
- But not a 3-sat formula! It has clauses of size 1 and 2 .
- Fix: 4 new variables $z_{1}, \ldots, z_{4}$ where $z_{1}, z_{2}$ forced to be 0 .
- Include those two in any short clause.

Theorem. IndependentSet, VertexCover, SetCover, SAT, 3-SAT are all NP-Complete.

## Finding NP-Complete Problems.

Want to prove problem $X$ is NP-complete.

- Check $X \in \mathcal{N} \mathcal{P}$.
- Choose known NP-complete problem $Y$.
- Prove $Y \leq_{P} X$.
- Often suffices to do single transformation from $y \rightarrow x$ where
- $y \in Y$ if $x \in X$.
- $y \notin Y$ if $x \notin X$
- Known as Karp Reduction.


## Touring problems.

Two new problems.

- TSP - Traveling Salesman. Given points $v_{1}, \ldots, v_{n}$ with distances $d\left(v_{i}, v_{j}\right) \geq 0$, can we visit all points and return home with total distance less than $B$ ?

$$
\operatorname{CosT}(\sigma)=\sum_{i=1}^{n} d\left(v_{\sigma(i)}, v_{\sigma(i+1)}\right)
$$

- HamCycle - Hamiltonian Cycle. Given directed graph $G=(V, E)$, is there a cycle that visits each vertex exactly once?


## HamCycle Example



## HamCycle

Theorem. HamCycle is NP-Complete.

- It is in $\mathcal{N} \mathcal{P}$.
- Need to reduce from some NP-Complete problem. Which one?

Claim. 3-SAT $\leq_{P}$ HAMCYCLE.
Reduction has two main parts.

- Make a graph with $2^{n}$ Hamiltonian cycles, one per assignment.
- Augment graph with clauses to invalidate assignments.



## Skeleton Construction

- $n$ rows (one per variable).
- Row has $4 m+2$ vertices connected in forward and backward path.
- First and last vertex of row $i$ connected to first and last of $i+1$.
- Source $s$ connected to first and last of row 1.
- First and last of row $n$ connected to $t$.
- Edge $(t, s)$.


## Augmenting

For clause $C_{\ell}=x_{i} \vee \neg x_{j} \vee x_{k}$ new node $c_{\ell}$ in graph.

- Edges $\left(v_{i, 4 \ell}, c_{\ell}\right)$ and $\left(c_{\ell}, v_{i, 4 \ell+1}\right)$.
- Edges $\left(v_{j, 4 \ell+1}, c_{\ell}\right)$ and $\left(c_{\ell}, v_{j, 4 \ell}\right)$.
- Edges $\left(v_{k, 4 \ell}, c_{\ell}\right)$ and $\left(c_{\ell}, v_{k, 4 \ell+1}\right)$.

Can only visit $c_{\ell}$ on row $i$ if traverse $i$ from left to right.

## Proof

If $\phi$ is satisfying assignment

- If $\phi\left(x_{i}\right)=1$ traverse left to right, else right to left.
- For each $C_{\ell}$, it is satisfied, so one term is traversed in the correct direction
- We can therefore splice it into our cycle.

If $P$ is a Hamiltonian cycle

- If $P$ visits $c_{\ell}$ from row $i$, it will also leave to row $i$.
- Splice out clause variables leaves cycle on skeleton.
- Cycles on skeleton correspond to assignments!


## Example

$$
\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)
$$

## Traveling Salesman

- TSP - Traveling Salesman. Given points $v_{1}, \ldots, v_{n}$ with distances $d\left(v_{i}, v_{j}\right) \geq 0$, can we visit all points and return home with total distance less than $B$ ?

$$
\operatorname{Cost}(\sigma)=\sum_{i=1}^{n} d\left(v_{\sigma(i)}, v_{\sigma(i+1)}\right)
$$

Theorem. TSP is NP-Complete

- Clearly in $\mathcal{N P}$.
- Reduction from HamCycle.


## TSP reduction

Given HamCycle instance $G=(V, E)$ make TSP instance

- One point per vertex.
- $d\left(v_{i}, v_{j}\right)=1$ if $\left(v_{i}, v_{j}\right) \in E$, else 2. (assymetric).
- Set bound to be $n$.

TSP of distance $n$ iff HamCycle of length $n$

## Graph Coloring

Def. A $k$-coloring of a graph $G=(V, E)$ is a function
$f: V \rightarrow\{1, \ldots, k\}$ such that for all $(u, v) \in E, f(u) \neq f(v)$.
Problem. Given $G=(V, E)$ and number $k$, does $G$ have a $k$-coloring?
Many applications

- Actually coloring maps!
- Scheduling jobs on machine with competing resources.
- Allocating variables to registers in a compiler.


## Reduction

Reduce from 3-SAT.

- Skeleton - Idea: 1 color for True, 1 for False
- 3 extra nodes in a clique $T, F, B$.
- For each variable $x_{i}$, two nodes $v_{i 0}, v_{i 1}$.
- Edges $\left(v_{i 0}, B\right),\left(v_{i 1}, B\right),\left(v_{i 0}, v_{i 1}\right)$.
- Either $v_{i 0}$ or $v_{i 1}$ gets the $T$ color.

HamPath

Similar to Hamiltonian Cycle, visit every vertex exactly once.
Theorem. HamPath is NP-Complete.
Two proofs.

- Modify 3-SAT to HamCycle reduction.
- Reduce from HamCycle directly.

Claim. 2-COLORING $\in \mathcal{P}$.
Proof.

- 2-coloring equivalent to bipartite testing.

Theorem. 3-COLORING is NP-Complete.

## Reduction

For clause $x_{i} \vee \neg x_{j} \vee x_{k}$


Proof

- Graph is polynomial in $n+m$.
- If satisfying assignment
- Color $B, T, F$ then $v_{i 1}$ as $T$ if $\phi\left(x_{i}\right)=1$.
- Since clauses satisfied, can color each gadget.
- If graph 3-colorable
- One of $v_{i 0}, v_{i 1}$ must get $T$ color.
- Clause gadget colorable iff clause satisfied.

Question. What about $k$-coloring?

