CMPSCI 311: Introduction to Algorithms

Lecture 20: Reductions and Intractability

Announcements

» Quiz due tonight
> HW 6 due 5/1 (Tuesday night!), and extra credit
Akshay Krishnamurthy » Midterms back on wednesday (Solutions up tonight)
» Last discussion on friday
o » Final Exam: Friday 5/4, 3:30-5:30pm, Marcus Hall 131.
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Recap Example
» Problem X is a set of strings s, the YES instances.

v

Algorithm A solves X if A(s) = TRUE iff s € X.

» B is polytime certifier for X if
» B is polytime algorithm of two inputs s and ¢ (a hint).

> s € X iff exists t with [¢| < p(|s|) and B(s,t) = TRUE.

» P — class of problems with polytime algorithm.

» NP — class of problems with polytime certifier.

\4

X is NP-Complete iff Y <p X for all Y € N'P.

Problem (X) | INDEPENDENTSET

Instance (s) Graph G and number &

Algorithm (A) | Try all subsets and check (Runtime?)
Hint (t) Which nodes are in the answer?

Certifier (B) | Are those nodes independent and size k?

Plan for today

> Review 3-SAT <p CIRCUITSAT
» HAMCYCLE
» TSP

Back to 3-SAT

Claim. If Y is NP-complete and Y <p X, then X is NP-complete.

Theorem. 3-SAT is NP-Complete.

» Clearly in N'P.
» Prove by reduction from CIRCUITSAT.

Example.




The Reduction

v

One variable z,, per circuit node v.

v

Clauses to enforce circuit computations.

» If v is = then v has one input u and can add clauses
(20 V xy), (m@y V 112y,).
> If v is V with u,w incoming then
(‘Tu \ ﬁ1’u)7 (5(711 \ j7511))7 (ﬁxv Vxy V xur)-
> If vis A then (mxy V @y), (0Zy V Ty, (Ty V 212y V 2Ty).

v

Input bits get set with () if fixed to one and (—x,) otherwise.

v

Clause (z,) for output bit.

Final steps

» This formula satisfiable iff circuit is satisfiable.

» But not a 3-sat formula! It has clauses of size 1 and 2.
» Fix: 4 new variables z1, ..., z4 where 21, 2o forced to be 0.

> Include those two in any short clause.

Theorem. INDEPENDENTSET, VERTEXCOVER, SETCOVER,
SAT, 3-SAT are all NP-Complete.

Finding NP-Complete Problems.

Want to prove problem X is NP-complete.

» Check X € N'P.
» Choose known NP-complete problem Y.
» Prove Y <p X.

» Often suffices to do single transformation from y — = where

»yeYifze X.
»y¢Yifed X.
» Known as Karp Reduction.

Touring problems.

Two new problems.

» TSP — Traveling Salesman. Given points vy, ..., v, with
distances d(v;, v;) > 0, can we visit all points and return home
with total distance less than B?

n

cosT(0) =Y d(Vo(), Vo(it1))

=1

» HAMCYCLE — Hamiltonian Cycle. Given directed graph
G = (V,E), is there a cycle that visits each vertex exactly once?

HaMCycCLE Example

HaMCYCLE

Theorem. HAMCYCLE is NP-Complete.

> Itisin NP.
> Need to reduce from some NP-Complete problem. Which one?

Claim. 3-SAT <p HAMCYCLE.

Reduction has two main parts.

» Make a graph with 2" Hamiltonian cycles, one per assignment.
» Augment graph with clauses to invalidate assignments.




Graph skeleton

( ‘Hamiltonian cycles correspond to |
the 27 possible truth assignments. |

Skeleton Construction

> n rows (one per variable).

v

Row has 4m + 2 vertices connected in forward and backward
path.

\{

First and last vertex of row i connected to first and last of 7 + 1.
» Source s connected to first and last of row 1.

First and last of row n connected to ¢.

v

v

Edge (t, s).

Augmenting

For clause Cy = z; V —z; V 3, new node ¢ in graph.
> Edges (vjae, ¢¢) and (cg, via041)-
> Edges (vjaet1,ce) and (co,vj.40).

> Edges (vga¢, ce) and (cg, vgae41)-

Can only visit ¢y on row i if traverse i from left to right.

Example

(w] V xo V —\ilfg) A (—‘1‘1 V —xg V —‘wg)

Proof

If ¢ is satisfying assignment

> If ¢(z;) = 1 traverse left to right, else right to left.

» For each Cy, it is satisfied, so one term is traversed in the correct
direction

» We can therefore splice it into our cycle.
If P is a Hamiltonian cycle

» If P visits ¢y from row 1, it will also leave to row i.
» Splice out clause variables leaves cycle on skeleton.

» Cycles on skeleton correspond to assignments!

Traveling Salesman

» TSP — Traveling Salesman. Given points vy, ..., v, with
distances d(v;,v;) > 0, can we visit all points and return home
with total distance less than B?

n

CcosT(o) = Z d(Vg(i)s Vo (it1))
i=1

Theorem. TSP is NP-Complete

» Clearly in NP.
» Reduction from HAMCYCLE.




TSP reduction

Given HAMCYCLE instance G = (V, E) make TSP instance
> One point per vertex.
> d(v;,v5) = 1if (v;,vj) € E, else 2. (assymetric).

» Set bound to be n.

TSP of distance n iff HamCycle of length n

HAMPATH

Similar to Hamiltonian Cycle, visit every vertex exactly once.
Theorem. HAMPATH is NP-Complete.
Two proofs.

» Modify 3-SAT to HAMCYCLE reduction.
> Reduce from HAMCYCLE directly.

Graph Coloring

Def. A k-coloring of a graph G = (V, E) is a function

f:V = {1,...,k} such that for all (u,v) € E, f(u) # f(v).

Problem. Given G = (V, E) and number k, does G have a
k-coloring?

Many applications
> Actually coloring maps!

» Scheduling jobs on machine with competing resources.
> Allocating variables to registers in a compiler.

Graph Coloring

Claim. 2-COLORING € P.

Proof.
» 2-coloring equivalent to bipartite testing.

Theorem. 3-COLORING is NP-Complete.

Reduction

Reduce from 3-SAT.

» Skeleton — Idea: 1 color for True, 1 for False

» 3 extra nodes in a clique T, F, B.
» For each variable x;, two nodes v;g, v;1.
> Edges (vio, B), (vi1, B), (vio, vi1).

» Either v, or v;; gets the T color.

Reduction

For clause z; V —z; V xy,




Proof

» Graph is polynomial in n 4+ m.
» If satisfying assignment

» Color B, T, F then v;; as T if ¢(z;) = 1.
» Since clauses satisfied, can color each gadget.

> If graph 3-colorable

» One of vjg, v;1 must get T color.
» Clause gadget colorable iff clause satisfied.

Question. What about k-coloring?




