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Announcements

I Quiz due tonight
I HW 6 due 5/1 (Tuesday night!), and extra credit
I Midterms back on wednesday (Solutions up tonight)
I Last discussion on friday
I Final Exam: Friday 5/4, 3:30-5:30pm, Marcus Hall 131.

Recap

I Problem X is a set of strings s, the YES instances.

I Algorithm A solves X if A(s) = true iff s ∈ X.

I B is polytime certifier for X if
I B is polytime algorithm of two inputs s and t (a hint).
I s ∈ X iff exists t with |t| ≤ p(|s|) and B(s, t) = True.

I P – class of problems with polytime algorithm.

I NP – class of problems with polytime certifier.

I X is NP-Complete iff Y ≤P X for all Y ∈ NP.

Example

Problem (X) IndependentSet

Instance (s) Graph G and number k

Algorithm (A) Try all subsets and check (Runtime?)

Hint (t) Which nodes are in the answer?

Certifier (B) Are those nodes independent and size k?

Plan for today

I Review 3-SAT ≤P CircuitSat
I HamCycle
I TSP

Back to 3-SAT

Claim. If Y is NP-complete and Y ≤P X, then X is NP-complete.
Theorem. 3-SAT is NP-Complete.

I Clearly in NP.
I Prove by reduction from CircuitSAT.

Example.

i1

i2

1

∧

∨ ¬
∧ o



The Reduction

I One variable xv per circuit node v.

I Clauses to enforce circuit computations.
I If v is ¬ then v has one input u and can add clauses

(xv ∨ xu), (¬xv ∨ ¬xu).
I If v is ∨ with u,w incoming then

(xv ∨ ¬xu), (xv ∨ ¬xw), (¬xv ∨ xu ∨ xw).
I If v is ∧ then (¬xv ∨ xu), (¬xv ∨ xw), (xv ∨ ¬xu ∨ ¬xw).

I Input bits get set with (xv) if fixed to one and (¬xv) otherwise.

I Clause (xo) for output bit.

Final steps

I This formula satisfiable iff circuit is satisfiable.

I But not a 3-sat formula! It has clauses of size 1 and 2.
I Fix: 4 new variables z1, . . . , z4 where z1, z2 forced to be 0.
I Include those two in any short clause.

Theorem. IndependentSet, VertexCover, SetCover,
SAT, 3-SAT are all NP-Complete.

Finding NP-Complete Problems.

Want to prove problem X is NP-complete.

I Check X ∈ NP.
I Choose known NP-complete problem Y .

I Prove Y ≤P X.

I Often suffices to do single transformation from y → x where
I y ∈ Y if x ∈ X.
I y /∈ Y if x /∈ X.
I Known as Karp Reduction.

Touring problems.

Two new problems.

I TSP – Traveling Salesman. Given points v1, . . . , vn with
distances d(vi, vj) ≥ 0, can we visit all points and return home
with total distance less than B?

cost(σ) =
n∑

i=1
d(vσ(i), vσ(i+1))

I HamCycle – Hamiltonian Cycle. Given directed graph
G = (V,E), is there a cycle that visits each vertex exactly once?

HamCycle Example

v1

v2 v3

v4

v5v6

HamCycle

Theorem. HamCycle is NP-Complete.

I It is in NP.
I Need to reduce from some NP-Complete problem. Which one?

Claim. 3-SAT ≤P HamCycle.
Reduction has two main parts.

I Make a graph with 2n Hamiltonian cycles, one per assignment.
I Augment graph with clauses to invalidate assignments.



Graph skeleton Skeleton Construction

I n rows (one per variable).

I Row has 4m+ 2 vertices connected in forward and backward
path.

I First and last vertex of row i connected to first and last of i+ 1.

I Source s connected to first and last of row 1.

I First and last of row n connected to t.

I Edge (t, s).

Augmenting

For clause C` = xi ∨ ¬xj ∨ xk new node c` in graph.

I Edges (vi,4`, c`) and (c`, vi,4`+1).
I Edges (vj,4`+1, c`) and (c`, vj,4`).
I Edges (vk,4`, c`) and (c`, vk,4`+1).

Can only visit c` on row i if traverse i from left to right.

Example

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

Proof

If φ is satisfying assignment

I If φ(xi) = 1 traverse left to right, else right to left.

I For each C`, it is satisfied, so one term is traversed in the correct
direction
I We can therefore splice it into our cycle.

If P is a Hamiltonian cycle

I If P visits c` from row i, it will also leave to row i.
I Splice out clause variables leaves cycle on skeleton.

I Cycles on skeleton correspond to assignments!

Traveling Salesman

I TSP – Traveling Salesman. Given points v1, . . . , vn with
distances d(vi, vj) ≥ 0, can we visit all points and return home
with total distance less than B?

cost(σ) =
n∑

i=1
d(vσ(i), vσ(i+1))

Theorem. TSP is NP-Complete

I Clearly in NP.
I Reduction from HamCycle.



TSP reduction

Given HamCycle instance G = (V,E) make TSP instance

I One point per vertex.
I d(vi, vj) = 1 if (vi, vj) ∈ E, else 2. (assymetric).
I Set bound to be n.

TSP of distance n iff HamCycle of length n

HamPath

Similar to Hamiltonian Cycle, visit every vertex exactly once.
Theorem. HamPath is NP-Complete.
Two proofs.

I Modify 3-SAT to HamCycle reduction.
I Reduce from HamCycle directly.

Graph Coloring

Def. A k-coloring of a graph G = (V,E) is a function
f : V → {1, . . . , k} such that for all (u, v) ∈ E, f(u) 6= f(v).
Problem. Given G = (V,E) and number k, does G have a
k-coloring?
Many applications

I Actually coloring maps!
I Scheduling jobs on machine with competing resources.
I Allocating variables to registers in a compiler.

Graph Coloring

Claim. 2-coloring ∈ P.
Proof.

I 2-coloring equivalent to bipartite testing.

Theorem. 3-coloring is NP-Complete.

Reduction

Reduce from 3-SAT.

I Skeleton – Idea: 1 color for True, 1 for False
I 3 extra nodes in a clique T, F,B.
I For each variable xi, two nodes vi0, vi1.
I Edges (vi0, B), (vi1, B), (vi0, vi1).

I Either vi0 or vi1 gets the T color.

Reduction

For clause xi ∨ ¬xj ∨ xk

vj0

vi1 T vk1 F



Proof

I Graph is polynomial in n+m.

I If satisfying assignment
I Color B, T, F then vi1 as T if φ(xi) = 1.
I Since clauses satisfied, can color each gadget.

I If graph 3-colorable
I One of vi0, vi1 must get T color.
I Clause gadget colorable iff clause satisfied.

Question. What about k-coloring?


