Today

CMPSCI 311: Introduction to Algorithms

Lecture 21: Randomized and Approximation Algorithms
Randomized and Approximation Algorithms

» Minimum Cuts
» Median Finding
» Vertex Cover

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: April 25, 2018

Randomized Algorithms Minimum Cuts

Problem. Given undirected G = (V, E), partition V into sets
A,V \ A to minimize,

v

So far: deterministic algorithms on worst case inputs.

v

Why deterministic algorithms?

» Easier to understand, pretty powerful. cut(4) = {(u,v) € B,u € 4,0 ¢ A}|

» Two types of randomized algorithms:

» Fail with some small probability.

- A > Previously, we saw how to compute minimum s — ¢ cut in
> Always succeed but running time is random.

directed graph.

» How powerful are randomized algorithms? > How do we compute global minimum cut?

Deterministic Algorithm Contraction Algorithm Preliminaries

Idea. Convert into s — ¢ cut in directed graph.

Replace e = (u,v) with directed edges in both directions (with Def. Multigraph G' = (V, E) is a graph that can have parallel edges.
capacity 1). Def. Contracting an edge (u,v) in G = (V, E) produces a new
Pick arbitrary s. multigraph G’ = (V', E')

for each other vertex t do

Compute minimum s — ¢ cut.
end for
Return smallest computed s — t cut.

» With new node w instead of u,v ((u,v) edges deleted).
> If (z,u) or (z,v) € E, then (z,w) € E'.
> All other edges preserved.

Running Time. n max-flow computations = O(mn?) at best.

Contraction Algorithm

S(v) ={v} forallveV.

while |V| > 2 do
Pick edge (u,v) € E uniformly at random.
Contract edge (u,v) to get G’ with new node w
Set S(w) < S(u) US(v).
Update G + G'.

end while

Return S(v) forv e V.

Contraction Algorithm Analysis

Theorem. Alg finds global min cut with probability at least 1/(5).
Proof. Suppose (4, B) is a global min cut with cut(4, B) =k
» What could go wrong in the first step?

> Select (u,v) where u € A,v € B.

k
Pr[mistake in round 1] = Pr[select u € A,v € B] = % of odges

> # of edges > 1kn since if deg(w) < k ({w}, V' \ {w}) is
smaller cut!

Contraction Algorithm Analysis

k 2
Pr[mistake in round 1] < — =

1
skn n

» Consider round j + 1:

» Every cut in contracted graph is a cut in GG, so every
supernode has degree at least k.

k 2

Pr[mistake in j + 1|success so far] < ———— = .
sk(n—j) n—j

Final steps

> Let E; be the event that (A, B) is not contracted in round j

2

Pr[E;|ExN...Ej 4] >1— ————
r[E;|Ey 1] = n_j+1

Pl‘[El n...N En—Q]
= Pr[El] . PI[EQ‘El] ca. Pr[En,Q‘El n... En,;g]

(-2 (-2 (-3)

n(n —1)

\Y%

Contraction Algorithm

Theorem. Alg finds global min cut with probability at least 1/(3).

Corollary. If we run (3) Inn times, alg succeeds with probability at
least 1 — 1/n.

Proof.

t
Pr[Fail all ¢ times] < (1 ~1/ <;L>>

If t = c(5) this is at most e~

Calculus Trick. (1 —1/z)* <1/e.

Global Min Cuts Takeaways

» Simple randomized algorithm works pretty well.

» Technical Tools

» Chain Rule
» Some calculus

Median Find

Problem. Given a set of numbers S = {ay,...,a,} the median is
the number in the middle if the numbers were sorted.

> If n is odd then kth smallest element where k = (n + 1)/2.
> If n is even then kth smallest element where k = n/2.

Deterministic algorithm?

» Sort numbers, take kth smallest.
> O(nlogn).

More generally

Problem. Given a set of numbers S = {a1,...,a,} and number £,
return kth smallest number. (Assume no duplicates)

Special cases:

> k =1: minimum element O(n)
> k =mn: maximum element O(n).

Why is it O(nlogn) for k = n/2?

Divide and Conquer Algorithm

» Choose splitter (or pivot) a; € S
> Form sets S~ ={a; : a; < a;}, ST ={a;j : aj > a;}.

If:

> |ST| =k —1: a; is the target.

> |S7| > k: recurse on (S7, k).

> [S7| <k —1, recurse on (St k — (|S7]|+1)).

Pseudocode

SELECT(S k):
Choose splitter a; € S.
for each a; € S do
Put aj € S7 if a; < a;.
Put a; € ST if a; > a;.
end for
If |S7| =k — 1, then return a;.
If |S7| > k, return SELECT(S™, k).
Else, return SELECT(ST,k — (]S~ |+ 1)).

Looks kind of like quicksort. . .

Fact. Algorithm is correct.

How to choose splitter?

We want recursive calls to work on much smaller sets.
» Best case, splitter is the median:

T(n) <T(n/2)+ cn = O(n) runtime

» Worst case, splitter is largest element:

T(n) < T(n —1) + cn = O(n?) runtime

» Middle case, splitter seperates en elements
T(n) <T(1-e€n)+cn
T(n) gcn{l—s—(l—e)—s—(l—e)Q—}—...] < =

How can we stay close to the best case?

Randomized Splitters

Idea. Choose splitter uniformly at random.

Analysis. Phase j when n(3/4)7+1 < |S| < n(3/4)7.

» Claim. Expect to stay in phase j for two rounds.

> Call splitter central if separates 1/4 fraction of elements.
> Pr[central splitter] = 1/2.
> If X is number of attempts until central splitter,

E[X] =) jPr[X =j]=> jp(1-p)!
j=1 j=1

:sz(l,p)jzﬁ%

Analysis

Let Y be a r.v. equal to number of steps of the algorithm
Y =Yy +Y +Ys+... where Y] is steps in phase j

One iteration in phase j takes cn(3/4)7 steps.

E[Y;] < 2cn(3/4)7 since expect two iterations.

vyvyVvYyy

BlY] = S B[Y)] < Y 2en(3/4)

= 2an(3/4)j < 8cn
J

Theorem

Expected running time of SELECT(n,k) is O(n).

Applications

» Randomized median find in expected linear time
Quicksort (Sketch)

» Choose pivot at random. Form S~ ST.

> Recursively sort both.

» Concatenate together.

Theorem. Quicksort has expected O(nlogn) time.

Approximation Algorithms

» We've seen important problems that are NP-complete. For these
problems, should we just give up? No.

» Perhaps we can approximate them. For example, for a
minimization problem can we design an algorithm such that
whenever we run the algorithm we can guarantee that

value of our solution

value of optimum solution —

for some value of @ > 1. Such an algorithm is called an
a-approximation algorithm.

Vertex Cover

> Input. An undirected graph G = (V, E) .

» Goal. Find the smallest subset of nodes S C V such that for
every edge e € I, at least one of the end points of e is in S

Algorithm

> S« 0
> While the graph G has any edges:

» Pick an edge (u,v)
» Add u and v to S
» Remove nodes u and v from G along with all incident edges

> Return S

Analysis
> Let M = {e1,...,ex} be the edges picked by the algorithm and
note that |S| = 2k.
» Lemma: The minimum vertex cover has size at least k&

» Proof: Since the endpoints of ey, ..., e are all distinct, it takes
at least k nodes to cover the edges in M

» Lemma: The nodes in S are a vertex cover.

> Proof: Consider any edge e = (u,v) € E. At the end of the
algorithm, e isn't in the graph. The only way e could have been
removed is if u or v was added to S. Hence S is a vertex cover.

» Therefore the algorithm achieves an approximation ratio of:

value of our solution 2k
< — =2

value of optimum solution = k

A randomized approximation algorithm!

> S0
> For each (u,v) € E:

» If neither u nor v are in S
» Randomly select one, add to S

» Return S

Analysis

v

Let OPT denote the optimal vertex cover.

v

At each round, we maintain

E|S N OPT| > E|S\ OPT|

» Since when we add an element, OPT must as well, and we agree
with probability 1/2.

v

Implies E|S| < 2|OPT)|

