CMPSCI 311: Introduction to Algorithms
Lecture 21: Randomized and Approximation Algorithms
Akshay Krishnamurthy
University of Massachusetts
Last Compied: April 25, 2018

Today

Randomized and Approximation Algorithms

- Minimum Cuts
- Median Finding
- Vertex Cover

Randomized Algorithms

- So far: deterministic algorithms on worst case inputs.
- Why deterministic algorithms?
- Easier to understand, pretty powerful.
- Two types of randomized algorithms:
- Fail with some small probability.
- Always succeed but running time is random.
- How powerful are randomized algorithms?

Minimum Cuts

Problem. Given undirected $G=(V, E)$, partition V into sets $A, V \backslash A$ to minimize,

$$
\operatorname{cut}(A)=|\{(u, v) \in E, u \in A, v \notin A\}|
$$

- Previously, we saw how to compute minimum $s-t$ cut in directed graph.
- How do we compute global minimum cut?

Contraction Algorithm Preliminaries

Def. Multigraph $G=(V, E)$ is a graph that can have parallel edges.
Def. Contracting an edge (u, v) in $G=(V, E)$ produces a new multigraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$

- With new node w instead of $u, v((u, v)$ edges deleted).
- If (x, u) or $(x, v) \in E$, then $(x, w) \in E^{\prime}$.
- All other edges preserved.
Contraction Algorithm

$S(v)=\{v\}$ for all $v \in V$.
while $\|V\|>2$ do
Pick edge $(u, v) \in E$ uniformly at random.
Contract edge (u, v) to get G^{\prime} with new node w
Set $S(w) \leftarrow S(u) \cup S(v)$.
Update $G \leftarrow G^{\prime}$.
end while
Return $S(v)$ for $v \in V$.

Contraction Algorithm Analysis

Theorem. Alg finds global min cut with probability at least $1 /\binom{n}{2}$.
Proof. Suppose (A, B) is a global min cut with $\operatorname{cut}(A, B)=k$

- What could go wrong in the first step?
- Select (u, v) where $u \in A, v \in B$.
$\operatorname{Pr}[$ mistake in round 1$]=\operatorname{Pr}[$ select $u \in A, v \in B]=\frac{k}{\# \text { of edges }}$
- \# of edges $\geq \frac{1}{2} k n$ since if $\operatorname{deg}(w)<k(\{w\}, V \backslash\{w\})$ is smaller cut!

Final steps

- Let E_{j} be the event that (A, B) is not contracted in round j

$$
\operatorname{Pr}\left[E_{j} \mid E_{1} \cap \ldots E_{j-1}\right] \geq 1-\frac{2}{n-j+1}
$$

$$
\operatorname{Pr}\left[E_{1} \cap \ldots \cap E_{n-2}\right]
$$

$$
=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \cdot \ldots \operatorname{Pr}\left[E_{n-2} \mid E_{1} \cap \ldots E_{n-3}\right]
$$

$$
\geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right) \ldots\left(1-\frac{2}{3}\right)
$$

$$
=\frac{2}{n(n-1)}
$$

Global Min Cuts Takeaways

- Simple randomized algorithm works pretty well.
- Technical Tools
- Chain Rule
- Some calculus

Median Find

Problem. Given a set of numbers $S=\left\{a_{1}, \ldots, a_{n}\right\}$ the median is the number in the middle if the numbers were sorted.

- If n is odd then k th smallest element where $k=(n+1) / 2$.
- If n is even then k th smallest element where $k=n / 2$.

Deterministic algorithm?

- Sort numbers, take k th smallest.
- $O(n \log n)$.

More generally

Problem. Given a set of numbers $S=\left\{a_{1}, \ldots, a_{n}\right\}$ and number k, return k th smallest number. (Assume no duplicates)

Special cases:

- $k=1$: minimum element $O(n)$
- $k=n$: maximum element $O(n)$.

Why is it $O(n \log n)$ for $k=n / 2$?

Divide and Conquer Algorithm

- Choose splitter (or pivot) $a_{i} \in S$
- Form sets $S^{-}=\left\{a_{j}: a_{j}<a_{i}\right\}, S^{+}=\left\{a_{j}: a_{j}>a_{i}\right\}$.

If:

- $\left|S^{-}\right|=k-1: a_{i}$ is the target.
- $\left|S^{-}\right| \geq k$: recurse on $\left(S^{-}, k\right)$.
- $\left|S^{-}\right|<k-1$, recurse on $\left(S^{+}, k-\left(\left|S^{-}\right|+1\right)\right.$).

Pseudocode

SElect(S,k):

Choose splitter $a_{i} \in S$.
for each $a_{j} \in S$ do
Put $a_{j} \in S^{-}$if $a_{j}<a_{i}$.
Put $a_{j} \in S^{+}$if $a_{j}>a_{i}$.
end for
If $\left|S^{-}\right|=k-1$, then return a_{i}.
If $\left|S^{-}\right| \geq k$, return $\operatorname{SELECT}\left(S^{-}, k\right)$.
Else, return $\operatorname{SELECT}\left(S^{+}, k-\left(\left|S^{-}\right|+1\right)\right)$.
Looks kind of like quicksort. . .
Fact. Algorithm is correct.

How to choose splitter?

We want recursive calls to work on much smaller sets.

- Best case, splitter is the median:

$$
T(n) \leq T(n / 2)+c n \Rightarrow O(n) \text { runtime }
$$

- Worst case, splitter is largest element:

$$
T(n) \leq T(n-1)+c n \Rightarrow O\left(n^{2}\right) \text { runtime }
$$

- Middle case, splitter seperates ϵn elements

$$
\begin{aligned}
& T(n) \leq T((1-\epsilon) n)+c n \\
& T(n) \leq c n\left[1+(1-\epsilon)+(1-\epsilon)^{2}+\ldots\right] \leq \frac{c n}{\epsilon}
\end{aligned}
$$

How can we stay close to the best case?

Randomized Splitters

Idea. Choose splitter uniformly at random.
Analysis. Phase j when $n(3 / 4)^{j+1} \leq|S| \leq n(3 / 4)^{j}$.

- Claim. Expect to stay in phase j for two rounds.
- Call splitter central if separates $1 / 4$ fraction of elements.
- $\operatorname{Pr}[$ central splitter $]=1 / 2$.
- If X is number of attempts until central splitter,

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{j=1}^{\infty} j \operatorname{Pr}[X=j]=\sum_{j=1}^{\infty} j p(1-p)^{j-1} \\
& =\frac{p}{1-p} \sum_{j=1}^{\infty} j(1-p)^{j}=\frac{p}{1-p} \frac{(1-p)}{p^{2}} \\
& =\frac{1}{p}
\end{aligned}
$$

Analysis

- Let Y be a r.v. equal to number of steps of the algorithm
- $Y=Y_{0}+Y_{1}+Y_{2}+\ldots$ where Y_{j} is steps in phase j
- One iteration in phase j takes $c n(3 / 4)^{j}$ steps.
- $\mathbf{E}\left[Y_{j}\right] \leq 2 c n(3 / 4)^{j}$ since expect two iterations.

$$
\begin{aligned}
\mathbf{E}[Y] & =\sum_{j} \mathbf{E}\left[Y_{j}\right] \leq \sum_{j} 2 c n(3 / 4)^{j} \\
& =2 c n \sum_{j}(3 / 4)^{j} \leq 8 c n
\end{aligned}
$$

Theorem
Expected running time of $\operatorname{SELECT}(n, k)$ is $O(n)$.

Approximation Algorithms

- We've seen important problems that are NP-complete. For these problems, should we just give up? No.
- Perhaps we can approximate them. For example, for a minimization problem can we design an algorithm such that whenever we run the algorithm we can guarantee that

$$
\frac{\text { value of our solution }}{\text { value of optimum solution }} \leq \alpha
$$

for some value of $\alpha \geq 1$. Such an algorithm is called an α-approximation algorithm.

Algorithm

- $S \leftarrow \emptyset$
- While the graph G has any edges:
- Pick an edge (u, v)
- Add u and v to S
- Remove nodes u and v from G along with all incident edges
- Return S

Applications

- Randomized median find in expected linear time

Quicksort (Sketch)

- Choose pivot at random. Form S^{-}, S^{+}.
- Recursively sort both.
- Concatenate together.

Theorem. Quicksort has expected $O(n \log n)$ time.

- Input. An undirected graph $G=(V, E)$.
- Goal. Find the smallest subset of nodes $S \subset V$ such that for every edge $e \in E$, at least one of the end points of e is in S

Analysis

- Let $M=\left\{e_{1}, \ldots, e_{k}\right\}$ be the edges picked by the algorithm and note that $|S|=2 k$.
- Lemma: The minimum vertex cover has size at least k
- Proof: Since the endpoints of e_{1}, \ldots, e_{k} are all distinct, it takes at least k nodes to cover the edges in M
- Lemma: The nodes in S are a vertex cover.
- Proof: Consider any edge $e=(u, v) \in E$. At the end of the algorithm, e isn't in the graph. The only way e could have been removed is if u or v was added to S. Hence S is a vertex cover.
- Therefore the algorithm achieves an approximation ratio of:

$$
\frac{\text { value of our solution }}{\text { value of optimum solution }} \leq \frac{2 k}{k}=2
$$

A randomized approximation algorithm!
Analysis

- Let OPT denote the optimal vertex cover.
- At each round, we maintain

$$
\mathbb{E}|S \cap O P T| \geq \mathbb{E}|S \backslash O P T|
$$

- Since when we add an element, OPT must as well, and we agree with probability $1 / 2$.
- Implies $\mathbb{E}|S| \leq 2|O P T|$

