	Today
CMPSCI 311: Introduction to AlgorithmsLecture 21: Randomized and Approximation AlgorithmsAkshay KrishnamurthyUniversity of MassachusettsLast Compiled: April 25, 2018	Randomized and Approximation Algorithms Minimum Cuts Median Finding Vertex Cover
Randomized Algorithms	Minimum Cuts
 So far: deterministic algorithms on worst case inputs. Why deterministic algorithms? Easier to understand, pretty powerful. Two types of randomized algorithms: Fail with some small probability. Always succeed but running time is random. How powerful are randomized algorithms? 	 Problem. Given undirected G = (V, E), partition V into sets A, V \ A to minimize, cut(A) = {(u, v) ∈ E, u ∈ A, v ∉ A} Previously, we saw how to compute minimum s - t cut in directed graph. How do we compute global minimum cut?
Deterministic Algorithm	Contraction Algorithm Preliminaries
Idea. Convert into $s - t$ cut in directed graph. Replace $e = (u, v)$ with directed edges in both directions (with capacity 1). Pick arbitrary s . for each other vertex t do Compute minimum $s - t$ cut. end for Return smallest computed $s - t$ cut. Running Time. n max-flow computations $\Rightarrow O(mn^2)$ at best.	 Def. Multigraph G = (V, E) is a graph that can have parallel edges. Def. Contracting an edge (u, v) in G = (V, E) produces a new multigraph G' = (V', E') With new node w instead of u, v ((u, v) edges deleted). If (x, u) or (x, v) ∈ E, then (x, w) ∈ E'. All other edges preserved.

Contraction Algorithm
$$S(r) = \{r\}$$
 for all $r \in V$.
when $[r] \geq 1$ to
 $[r] > 2$ to<

Median Find	More generally
 Problem. Given a set of numbers S = {a1,,an} the median is the number in the middle if the numbers were sorted. If n is odd then kth smallest element where k = (n + 1)/2. If n is even then kth smallest element where k = n/2. Deterministic algorithm? Sort numbers, take kth smallest. O(n log n). 	 Problem. Given a set of numbers S = {a₁,, a_n} and number k, return kth smallest number. (Assume no duplicates) Special cases: k = 1: minimum element O(n) k = n: maximum element O(n). Why is it O(n log n) for k = n/2?
Divide and Conquer Algorithm	Pseudocode
• Choose splitter (or pivot) $a_i \in S$ • Form sets $S^- = \{a_j : a_j < a_i\}, S^+ = \{a_j : a_j > a_i\}.$ If: • $ S^- = k - 1$: a_i is the target. • $ S^- \ge k$: recurse on (S^-, k) . • $ S^- < k - 1$, recurse on $(S^+, k - (S^- + 1)).$	SELECT(S,k): Choose splitter $a_i \in S$. for each $a_j \in S$ do Put $a_j \in S^-$ if $a_j < a_i$. Put $a_j \in S^+$ if $a_j > a_i$. end for If $ S^- = k - 1$, then return a_i . If $ S^- \ge k$, return SELECT (S^-, k) . Else, return SELECT $(S^+, k - (S^- + 1))$. Looks kind of like quicksort Fact. Algorithm is correct.
How to choose splitter? We want recursive calls to work on much smaller sets. • Best case, splitter is the median: $T(n) \le T(n/2) + cn \Rightarrow O(n)$ runtime	 Randomized Splitters Idea. Choose splitter uniformly at random. Analysis. Phase j when n(3/4)^{j+1} ≤ S ≤ n(3/4)^j. ► Claim. Expect to stay in phase j for two rounds. ► Call splitter <i>central</i> if separates 1/4 fraction of elements.
\blacktriangleright Worst case, splitter is largest element: $T(n) \leq T(n-1) + cn \Rightarrow O(n^2) \mbox{ runtime}$	 Pr[central splitter] = 1/2. If X is number of attempts until central splitter, E[X] = ∑_{j=1}[∞] j Pr[X = j] = ∑_{j=1}[∞] jp(1 - p)^{j-1}
• Middle case, splitter seperates ϵn elements $T(n) \leq T((1-\epsilon)n) + cn$ $T(n) \leq cn \left[1 + (1-\epsilon) + (1-\epsilon)^2 + \dots\right] \leq \frac{cn}{\epsilon}$	$= \frac{p}{1-p} \sum_{j=1}^{\infty} j(1-p)^j = \frac{p}{1-p} \frac{(1-p)}{p^2}$ $= \frac{1}{p}$
How can we stay close to the best case?	

Analysis	Applications
• Let Y be a r.v. equal to number of steps of the algorithm • $Y = Y_0 + Y_1 + Y_2 +$ where Y_j is steps in phase j • One iteration in phase j takes $cn(3/4)^j$ steps. • $\mathbf{E}[Y_j] \le 2cn(3/4)^j$ since expect two iterations. $\mathbf{E}[Y] = \sum_j \mathbf{E}[Y_j] \le \sum_j 2cn(3/4)^j$ $= 2cn \sum_j (3/4)^j \le 8cn$ Theorem Expected running time of $\operatorname{SELECT}(n,k)$ is $O(n)$.	 Randomized median find in expected linear time Quicksort (Sketch) Choose pivot at random. Form S⁻, S⁺. Recursively sort both. Concatenate together. Theorem. Quicksort has expected O(n log n) time.
Approximation Algorithms	Vertex Cover
 We've seen important problems that are NP-complete. For these problems, should we just give up? No. Perhaps we can <i>approximate</i> them. For example, for a minimization problem can we design an algorithm such that whenever we run the algorithm we can guarantee that value of our solution value of our solution value of optimum solution ≤ α for some value of α ≥ 1. Such an algorithm is called an α-approximation algorithm. 	 Input. An undirected graph G = (V, E). Goal. Find the smallest subset of nodes S ⊂ V such that for every edge e ∈ E, at least one of the end points of e is in S
Algorithm • $S \leftarrow \emptyset$ • While the graph G has any edges: • Pick an edge (u, v) • Add u and v to S • Remove nodes u and v from G along with all incident edges • Return S	Analysis• Let $M = \{e_1, \ldots, e_k\}$ be the edges picked by the algorithm and note that $ S = 2k$.• Lemma: The minimum vertex cover has size at least k • Proof: Since the endpoints of e_1, \ldots, e_k are all distinct, it takes at least k nodes to cover the edges in M • Lemma: The nodes in S are a vertex cover.• Proof: Consider any edge $e = (u, v) \in E$. At the end of the algorithm, e isn't in the graph. The only way e could have been removed is if u or v was added to S . Hence S is a vertex cover.• Therefore the algorithm achieves an approximation ratio of: $\frac{value of our solution}{value of optimum solution} \leq \frac{2k}{k} = 2$

A randomized approximation algorithm!	Analysis
▶ $S \leftarrow \emptyset$ ▶ For each $(u, v) \in E$:	Let OPT denote the optimal vertex cover.At each round, we maintain
 If neither u nor v are in S Randomly select one, add to S Return S 	$\mathbb{E} S \cap OPT \ge \mathbb{E} S \setminus OPT $ • Since when we add an element, OPT must as well, and we agree with probability 1/2. • Implies $\mathbb{E} S \le 2 OPT $