
CMPSCI 311: Introduction to Algorithms
Lecture 21: Randomized and Approximation Algorithms

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: April 25, 2018

Today

Randomized and Approximation Algorithms

I Minimum Cuts
I Median Finding
I Vertex Cover

Randomized Algorithms

I So far: deterministic algorithms on worst case inputs.

I Why deterministic algorithms?
I Easier to understand, pretty powerful.

I Two types of randomized algorithms:
I Fail with some small probability.
I Always succeed but running time is random.

I How powerful are randomized algorithms?

Minimum Cuts

Problem. Given undirected G = (V,E), partition V into sets
A, V \A to minimize,

cut(A) = |{(u, v) ∈ E, u ∈ A, v /∈ A}|

I Previously, we saw how to compute minimum s− t cut in
directed graph.

I How do we compute global minimum cut?

Deterministic Algorithm

Idea. Convert into s− t cut in directed graph.
Replace e = (u, v) with directed edges in both directions (with
capacity 1).
Pick arbitrary s.
for each other vertex t do

Compute minimum s− t cut.
end for
Return smallest computed s− t cut.

Running Time. n max-flow computations ⇒ O(mn2) at best.

Contraction Algorithm Preliminaries

Def. Multigraph G = (V,E) is a graph that can have parallel edges.
Def. Contracting an edge (u, v) in G = (V,E) produces a new
multigraph G′ = (V ′, E′)

I With new node w instead of u, v ((u, v) edges deleted).
I If (x, u) or (x, v) ∈ E, then (x,w) ∈ E′.
I All other edges preserved.

Contraction Algorithm

S(v) = {v} for all v ∈ V .
while |V | > 2 do

Pick edge (u, v) ∈ E uniformly at random.
Contract edge (u, v) to get G′ with new node w
Set S(w)← S(u) ∪ S(v).
Update G← G′.

end while
Return S(v) for v ∈ V .

Contraction Algorithm Analysis

Theorem. Alg finds global min cut with probability at least 1/
(n

2
)
.

Proof. Suppose (A,B) is a global min cut with cut(A,B) = k

I What could go wrong in the first step?
I Select (u, v) where u ∈ A, v ∈ B.

Pr[mistake in round 1] = Pr[select u ∈ A, v ∈ B] = k

of edges

I # of edges ≥ 1
2kn since if deg(w) < k ({w}, V \ {w}) is

smaller cut!

Contraction Algorithm Analysis

Pr[mistake in round 1] ≤ k
1
2kn

= 2
n

I Consider round j + 1:
I Every cut in contracted graph is a cut in G, so every

supernode has degree at least k.

Pr[mistake in j + 1|success so far] ≤ k
1
2k(n− j) = 2

n− j

Final steps

I Let Ej be the event that (A,B) is not contracted in round j

Pr[Ej |E1 ∩ . . . Ej−1] ≥ 1− 2
n− j + 1

Pr[E1 ∩ . . . ∩ En−2]
= Pr[E1] · Pr[E2|E1] · . . .Pr[En−2|E1 ∩ . . . En−3]

≥
(

1− 2
n

)(
1− 2

n− 1

)
. . .

(
1− 2

3

)

= 2
n(n− 1)

Contraction Algorithm

Theorem. Alg finds global min cut with probability at least 1/
(n

2
)
.

Corollary. If we run
(n

2
)

lnn times, alg succeeds with probability at
least 1− 1/n.
Proof.

Pr[Fail all t times] ≤
(

1− 1/
(
n

2

))t

If t = c
(n

2
)
this is at most e−c.

Calculus Trick. (1− 1/x)x ≤ 1/e.

Global Min Cuts Takeaways

I Simple randomized algorithm works pretty well.

I Technical Tools
I Chain Rule
I Some calculus

Median Find

Problem. Given a set of numbers S = {a1, . . . , an} the median is
the number in the middle if the numbers were sorted.

I If n is odd then kth smallest element where k = (n+ 1)/2.
I If n is even then kth smallest element where k = n/2.

Deterministic algorithm?

I Sort numbers, take kth smallest.
I O(n logn).

More generally

Problem. Given a set of numbers S = {a1, . . . , an} and number k,
return kth smallest number. (Assume no duplicates)
Special cases:

I k = 1: minimum element O(n)
I k = n: maximum element O(n).

Why is it O(n logn) for k = n/2?

Divide and Conquer Algorithm

I Choose splitter (or pivot) ai ∈ S
I Form sets S− = {aj : aj < ai}, S+ = {aj : aj > ai}.

If:

I |S−| = k − 1: ai is the target.
I |S−| ≥ k: recurse on (S−, k).
I |S−| < k − 1, recurse on (S+, k − (|S−|+ 1)).

Pseudocode

Select(S,k):
Choose splitter ai ∈ S.
for each aj ∈ S do

Put aj ∈ S− if aj < ai.
Put aj ∈ S+ if aj > ai.

end for
If |S−| = k − 1, then return ai.
If |S−| ≥ k, return Select(S−, k).
Else, return Select(S+, k − (|S−|+ 1)).

Looks kind of like quicksort. . .
Fact. Algorithm is correct.

How to choose splitter?
We want recursive calls to work on much smaller sets.

I Best case, splitter is the median:

T (n) ≤ T (n/2) + cn⇒ O(n) runtime

I Worst case, splitter is largest element:

T (n) ≤ T (n− 1) + cn⇒ O(n2) runtime

I Middle case, splitter seperates εn elements
T (n) ≤ T ((1− ε)n) + cn

T (n) ≤ cn
[
1 + (1− ε) + (1− ε)2 + . . .

]
≤ cn

ε

How can we stay close to the best case?

Randomized Splitters

Idea. Choose splitter uniformly at random.
Analysis. Phase j when n(3/4)j+1 ≤ |S| ≤ n(3/4)j .

I Claim. Expect to stay in phase j for two rounds.
I Call splitter central if separates 1/4 fraction of elements.
I Pr[central splitter] = 1/2.
I If X is number of attempts until central splitter,

E[X] =
∞∑

j=1
j Pr[X = j] =

∞∑

j=1
jp(1− p)j−1

= p

1− p
∞∑

j=1
j(1− p)j = p

1− p
(1− p)
p2

= 1
p

Analysis

I Let Y be a r.v. equal to number of steps of the algorithm
I Y = Y0 + Y1 + Y2 + . . . where Yj is steps in phase j
I One iteration in phase j takes cn(3/4)j steps.
I E[Yj] ≤ 2cn(3/4)j since expect two iterations.

E[Y] =
∑

j

E[Yj] ≤
∑

j

2cn(3/4)j

= 2cn
∑

j

(3/4)j ≤ 8cn

Theorem
Expected running time of Select(n,k) is O(n).

Applications

I Randomized median find in expected linear time

Quicksort (Sketch)

I Choose pivot at random. Form S−, S+.
I Recursively sort both.
I Concatenate together.

Theorem. Quicksort has expected O(n logn) time.

Approximation Algorithms

I We’ve seen important problems that are NP-complete. For these
problems, should we just give up? No.

I Perhaps we can approximate them. For example, for a
minimization problem can we design an algorithm such that
whenever we run the algorithm we can guarantee that

value of our solution
value of optimum solution ≤ α

for some value of α ≥ 1. Such an algorithm is called an
α-approximation algorithm.

Vertex Cover

I Input. An undirected graph G = (V,E) .

I Goal. Find the smallest subset of nodes S ⊂ V such that for
every edge e ∈ E, at least one of the end points of e is in S

Algorithm

I S ← ∅
I While the graph G has any edges:

I Pick an edge (u, v)
I Add u and v to S
I Remove nodes u and v from G along with all incident edges

I Return S

Analysis

I Let M = {e1, . . . , ek} be the edges picked by the algorithm and
note that |S| = 2k.

I Lemma: The minimum vertex cover has size at least k

I Proof: Since the endpoints of e1, . . . , ek are all distinct, it takes
at least k nodes to cover the edges in M

I Lemma: The nodes in S are a vertex cover.

I Proof: Consider any edge e = (u, v) ∈ E. At the end of the
algorithm, e isn’t in the graph. The only way e could have been
removed is if u or v was added to S. Hence S is a vertex cover.

I Therefore the algorithm achieves an approximation ratio of:

value of our solution
value of optimum solution ≤

2k
k

= 2

A randomized approximation algorithm!

I S ← ∅
I For each (u, v) ∈ E:

I If neither u nor v are in S
I Randomly select one, add to S

I Return S

Analysis

I Let OPT denote the optimal vertex cover.

I At each round, we maintain

E|S ∩OPT | ≥ E|S \OPT |

I Since when we add an element, OPT must as well, and we agree
with probability 1/2.

I Implies E|S| ≤ 2|OPT |

