
CMPSCI 311: Introduction to Algorithms
Lecture 22: Randomized and Approximation Algorithms

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: May 2, 2018

Announcements

I HW6 due tomorrow!

I Extra Credit tomorrow as well

I Final on Friday 3:30-5:30 (Marcus Hall 131)

I We are trying our best on grades. . .

I Please fill out SRTI course evaluations and UCA evaluations.

Remarks on the final

I One problem you have already seen before
I Either homework or previous exam

I Covers everything fairly equally
I Big-Oh, Graphs, Greedy, Divide and Conquer, Dynamic

Programming, Network Flows, NP-Completeness, Randomized
Algs.

Today

I Randomized Median Finding
I Approximate Load Balancing

Randomized Algorithm

I Algorithms that make random choices.
I Can flip coins, roll dice, etc.

I Two types of randomized algorithms:
I Fail with some small probability.
I Always succeed but running time is random.

I How powerful are randomized algorithms?

Median Find

Problem. Given a set of numbers S = {a1, . . . , an} the median is
the number in the middle if the numbers were sorted.

I If n is odd then kth smallest element where k = (n+ 1)/2.
I If n is even then kth smallest element where k = n/2.

Deterministic algorithm?

I Sort numbers, take kth smallest.
I O(n logn).

More generally

Problem. Given a set of numbers S = {a1, . . . , an} and number k,
return kth smallest number. (Assume no duplicates)
Special cases:

I k = 1: minimum element O(n)
I k = n: maximum element O(n).

Why is it O(n logn) for k = n/2?

Divide and Conquer Algorithm

I Choose splitter (or pivot) ai ∈ S
I Form sets S− = {aj : aj < ai}, S+ = {aj : aj > ai}.

If:

I |S−| = k − 1: ai is the target.
I |S−| ≥ k: recurse on (S−, k).
I |S−| < k − 1, recurse on (S+, k − (|S−|+ 1)).

Pseudocode

Select(S,k):
Choose splitter ai ∈ S.
for each aj ∈ S do

Put aj ∈ S− if aj < ai.
Put aj ∈ S+ if aj > ai.

end for
If |S−| = k − 1, then return ai.
If |S−| ≥ k, return Select(S−, k).
Else, return Select(S+, k − (|S−|+ 1)).

Looks kind of like quicksort. . .
Fact. Algorithm is correct.

How to choose splitter?
We want recursive calls to work on much smaller sets.

I Best case, splitter is the median:

T (n) ≤ T (n/2) + cn⇒ O(n) runtime

I Worst case, splitter is largest element:

T (n) ≤ T (n− 1) + cn⇒ O(n2) runtime

I Middle case, splitter seperates εn elements
T (n) ≤ T ((1− ε)n) + cn

T (n) ≤ cn
[
1 + (1− ε) + (1− ε)2 + . . .

]
≤ cn

ε

How can we stay close to the best case?

Randomized Splitters

Idea. Choose splitter uniformly at random.
Analysis. Phase j when n(3/4)j+1 ≤ |S| ≤ n(3/4)j .

I Claim. Expect to stay in phase j for two rounds.
I Call splitter central if separates 1/4 fraction of elements.
I Pr[central splitter] = 1/2.
I If X is number of attempts until central splitter,

E[X] =
∞∑

j=1
j Pr[X = j] =

∞∑

j=1
jp(1− p)j−1

= p

1− p
∞∑

j=1
j(1− p)j = p

1− p
(1− p)
p2

= 1
p

Analysis

I Let Y be a r.v. equal to number of steps of the algorithm
I Y = Y0 + Y1 + Y2 + . . . where Yj is steps in phase j
I One iteration in phase j takes cn(3/4)j steps.
I E[Yj] ≤ 2cn(3/4)j since expect two iterations.

E[Y] =
∑

j

E[Yj] ≤
∑

j

2cn(3/4)j

= 2cn
∑

j

(3/4)j ≤ 8cn

Theorem
Expected running time of Select(n,k) is O(n).

Applications

I Randomized median find in expected linear time

Quicksort (Sketch)

I Choose pivot at random. Form S−, S+.
I Recursively sort both.
I Concatenate together.

Theorem. Quicksort has expected O(n logn) time.

Approximation Algorithms

I We’ve seen important problems that are NP-complete. For these
problems, should we just give up? No.

I Perhaps we can approximate them. For example, for a
minimization problem can we design an algorithm such that
whenever we run the algorithm we can guarantee that

value of our solution
value of optimum solution ≤ α

for some value of α ≥ 1. Such an algorithm is called an
α-approximation algorithm.

Load Balancing

I Input. There are m machines and n jobs {1, 2, . . . , n} to be
done. The time it takes to do each job is t1, t2, . . . , tn.

I Goal. Divide the jobs between the m machines such that no
machine does too much work, i.e., if S1, . . . , Sm ⊂ {1, 2, . . . , n}
are the set of jobs done by each machine then we want to
minimize:

T = max


∑

i∈S1

ti, . . . ,
∑

i∈Sm

ti




i.e., the time taken by the last machine to finish their jobs.

I We say the total amount of time of jobs allocated to a machine is
its load

A Simple Algorithm

I For i = 1 to n:
I Assign job to the machine who currently has the smallest load.

Analysis: Part 1

I Let T ∗ be smallest possible value max
(∑

i∈S1 ti, . . . ,
∑

i∈Sm
ti
)

I Lemma 1: T ∗ ≥ ti for all i = 1, 2, . . . , n.

I Proof: Some machine needs to do the ith job and that machine
is going to take at least ti time. The max time taken is at least
the time this machine spends.

I Lemma 2: T ∗ ≥ (∑n
i=1 ti)/m.

I Proof: If every machine took < (∑n
i=1 ti)/m time, then the total

amount of work done is <∑n
i=1 ti. But this is impossible since

all the jobs need to be done.

Analysis: Part 2

I When a machine is assigned job i by the algorithm,

its new load = its old load + ti

I Recall that we assigned the job to the machine with the smallest
current load. The smallest current load is at most (∑n

i=1 ti)/m.

I Hence, by appealing to Lemma 1 and Lemma 2,

its new load < (
n∑

i=1
ti)/m+ ti ≤ 2T ∗

i.e., a machine can never be assigned more than a load of 2T ∗.

I Hence, the algorithm is a 2-approximation.

An Improved Algorithm

I Sort the jobs such that t1 ≥ t2 ≥ t3 ≥ . . . ≥ tn
I For i = 1 to n:

I Assign job to the machine who currently has the smallest load.

Analysis: Part 1

I Let T ∗ be smallest possible value max
(∑

i∈S1 ti, . . . ,
∑

i∈Sm
ti
)

I Lemma 3: T ∗ ≥ 2tm+1.

I Proof: Some machine must do at least two of the jobs
{1, 2, . . . ,m+ 1}, say jobs i and j. That machine takes at least
ti + tj ≥ 2tm+1 time.

Analysis: Part 2
I When a machine is assigned job i by the algorithm,

new load = old load + ti

I Recall that we assigned the job to the machine with the smallest
current load. The smallest current load is at most (∑n

i=1 ti)/m
and is 0 if i ≤ m.

I Hence, if i ≤ m then by appealing to Lemma 1,

new load = 0 + ti ≤ T ∗

I Hence, if i ≥ m+ 1, by appealing to Lemma 2 and Lemma 3,

new load < (
n∑

i=1
ti)/m+ ti ≤ T ∗ + tm+1 ≤ T ∗ + T ∗/2 = 1.5T ∗

I Hence, the algorithm is a 1.5-approximation since no machine can
ever be assigned more than 1.5 times the optimum.

