	Announcements
CMPSCI 311: Introduction to Algorithms Lecture 22: Randomized and Approximation Algorithms Akshay Krishnamurthy University of Massachusetts	 HW6 due tomorrow! Extra Credit tomorrow as well Final on Friday 3:30-5:30 (Marcus Hall 131) We are trying our best on grades Please fill out SRTI course evaluations and UCA evaluations.
Remarks on the final	Today
 One problem you have already seen before Either homework or previous exam Covers everything fairly equally Big-Oh, Graphs, Greedy, Divide and Conquer, Dynamic Programming, Network Flows, NP-Completeness, Randomized Algs. 	 Randomized Median Finding Approximate Load Balancing
Randomized Algorithm	Median Find
 Algorithms that make random choices. Can flip coins, roll dice, etc. Two types of randomized algorithms: Fail with some small probability. Always succeed but running time is random. How powerful are randomized algorithms? 	 Problem. Given a set of numbers S = {a₁,, a_n} the median is the number in the middle if the numbers were sorted. If n is odd then kth smallest element where k = (n + 1)/2. If n is even then kth smallest element where k = n/2. Deterministic algorithm? Sort numbers, take kth smallest. O(n log n).

More generally	Divide and Conquer Algorithm
 Problem. Given a set of numbers S = {a1,,an} and number k, return kth smallest number. (Assume no duplicates) Special cases: k = 1: minimum element O(n) k = n: maximum element O(n). Why is it O(n log n) for k = n/2? 	• Choose splitter (or pivot) $a_i \in S$ • Form sets $S^- = \{a_j : a_j < a_i\}, S^+ = \{a_j : a_j > a_i\}.$ If: • $ S^- = k - 1: a_i$ is the target. • $ S^- \ge k:$ recurse on $(S^-, k).$ • $ S^- < k - 1$, recurse on $(S^+, k - (S^- + 1)).$
Pseudocode	How to choose splitter? We want recursive calls to work on much smaller sets.
SELECT(S,k): Choose splitter $a_i \in S$. for each $a_j \in S$ do Put $a_j \in S^-$ if $a_j < a_i$. Put $a_j \in S^+$ if $a_j > a_i$. end for If $ S^- = k - 1$, then return a_i . If $ S^- \ge k$, return SELECT (S^-, k) . Else, return SELECT $(S^+, k - (S^- + 1))$. Looks kind of like quicksort Fact. Algorithm is correct.	• Best case, splitter is the median: $T(n) \leq T(n/2) + cn \Rightarrow O(n) \text{ runtime}$ • Worst case, splitter is largest element: $T(n) \leq T(n-1) + cn \Rightarrow O(n^2) \text{ runtime}$ • Middle case, splitter seperates ϵn elements $T(n) \leq T((1-\epsilon)n) + cn$ $T(n) \leq cn \left[1 + (1-\epsilon) + (1-\epsilon)^2 + \dots\right] \leq \frac{cn}{\epsilon}$ How can we stay close to the best case?
Randomized Splitters Idea. Choose splitter uniformly at random. Analysis. Phase <i>j</i> when $n(3/4)^{j+1} \le S \le n(3/4)^j$. • Claim. Expect to stay in phase <i>j</i> for two rounds. • Call splitter <i>central</i> if separates 1/4 fraction of elements. • Pr[central splitter] = 1/2. • If <i>X</i> is number of attempts until central splitter, $\mathbf{E}[X] = \sum_{j=1}^{\infty} j \Pr[X = j] = \sum_{j=1}^{\infty} jp(1-p)^{j-1}$ $= \frac{p}{1-p} \sum_{j=1}^{\infty} j(1-p)^j = \frac{p}{1-p} \frac{(1-p)}{p^2}$ $= \frac{1}{p}$	Analysis • Let Y be a r.v. equal to number of steps of the algorithm • $Y = Y_0 + Y_1 + Y_2 + \dots$ where Y_j is steps in phase j • One iteration in phase j takes $cn(3/4)^j$ steps. • $\mathbf{E}[Y_j] \le 2cn(3/4)^j$ since expect two iterations. $\mathbf{E}[Y] = \sum_j \mathbf{E}[Y_j] \le \sum_j 2cn(3/4)^j$ $= 2cn \sum_j (3/4)^j \le 8cn$
	$= 2cn \sum_{j} (3/4)^{j} \le 8cn$ Theorem Expected running time of SELECT(n,k) is $O(n)$.

Applications	Approximation Algorithms
 Randomized median find in expected linear time Quicksort (Sketch) Choose pivot at random. Form S⁻, S⁺. Recursively sort both. Concatenate together. Theorem. Quicksort has expected O(n log n) time. 	 We've seen important problems that are NP-complete. For these problems, should we just give up? No. Perhaps we can <i>approximate</i> them. For example, for a minimization problem can we design an algorithm such that whenever we run the algorithm we can guarantee that value of our solution value of optimum solution ≤ α for some value of α ≥ 1. Such an algorithm is called an α-approximation algorithm.
Load Balancing	A Simple Algorithm
 Input. There are m machines and n jobs {1,2,,n} to be done. The time it takes to do each job is t₁, t₂,, t_n. Goal. Divide the jobs between the m machines such that no machine does too much work, i.e., if S₁,, S_m ⊂ {1,2,,n} are the set of jobs done by each machine then we want to minimize: T = max (∑_{i∈S1} t_i,, ∑_{i∈Sm} t_i) i.e., the time taken by the last machine to finish their jobs. We say the total amount of time of jobs allocated to a machine is its load 	 For i = 1 to n: Assign job to the machine who currently has the smallest load.
Analysis: Part 1	Analysis: Part 2
 Let T* be smallest possible value max (∑_{i∈S1} t_i,,∑_{i∈Sm} t_i) Lemma 1: T* ≥ t_i for all i = 1, 2,, n. Proof: Some machine needs to do the <i>i</i>th job and that machine is going to take at least t_i time. The max time taken is at least the time this machine spends. Lemma 2: T* ≥ (∑_{i=1}ⁿ t_i)/m. Proof: If every machine took < (∑_{i=1}ⁿ t_i)/m time, then the total amount of work done is < ∑_{i=1}ⁿ t_i. But this is impossible since all the jobs need to be done. 	 When a machine is assigned job i by the algorithm, its new load = its old load + t_i Recall that we assigned the job to the machine with the smallest current load. The smallest current load is at most (∑_{i=1}ⁿ t_i)/m. Hence, by appealing to Lemma 1 and Lemma 2, its new load < (∑_{i=1}ⁿ t_i)/m + t_i ≤ 2T* i.e., a machine can never be assigned more than a load of 2T*. Hence, the algorithm is a 2-approximation.

An Improved Algorithm	Analysis: Part 1
 Sort the jobs such that t₁ ≥ t₂ ≥ t₃ ≥ ≥ t_n For i = 1 to n: Assign job to the machine who currently has the smallest load. 	 Let T* be smallest possible value max (∑_{i∈S1} t_i,, ∑_{i∈Sm} t_i) Lemma 3: T* ≥ 2t_{m+1}. Proof: Some machine must do at least two of the jobs {1,2,,m+1}, say jobs i and j. That machine takes at least t_i + t_j ≥ 2t_{m+1} time.
Analysis: Part 2	
When a machine is assigned job i by the algorithm,	

new load = old load + t_i

- ▶ Recall that we assigned the job to the machine with the smallest current load. The smallest current load is at most $(\sum_{i=1}^{n} t_i)/m$ and is 0 if $i \leq m$.
- \blacktriangleright Hence, if $i \leq m$ then by appealing to Lemma 1,

new load = $0 + t_i \leq T^*$

 \blacktriangleright Hence, if $i\geq m+1,$ by appealing to Lemma 2 and Lemma 3,

new load $<(\sum_{i=1}^n t_i)/m+t_i \leq T^*+t_{m+1} \leq T^*+T^*/2=1.5T^*$

 \blacktriangleright Hence, the algorithm is a 1.5-approximation since no machine can ever be assigned more than 1.5 times the optimum.