

Remarks on the final
- One problem you have already seen before
- Either homework or previous exam
- Covers everything fairly equally
- Big-Oh, Graphs, Greedy, Divide and Conquer, Dynamic
Algs.

Randomized Algorithm

- Algorithms that make random choices.
- Can flip coins, roll dice, etc.
- Two types of randomized algorithms:
- Fail with some small probability.
- Always succeed but running time is random.
- How powerful are randomized algorithms?

Announcements

- HW6 due tomorrow!
- Extra Credit tomorrow as well
- Final on Friday 3:30-5:30 (Marcus Hall 131)
- We are trying our best on grades...
- Please fill out SRTI course evaluations and UCA evaluations.
- Randomized Median Finding
- Approximate Load Balancing

Median Find

Problem. Given a set of numbers $S=\left\{a_{1}, \ldots, a_{n}\right\}$ the median is the number in the middle if the numbers were sorted.

- If n is odd then k th smallest element where $k=(n+1) / 2$.
- If n is even then k th smallest element where $k=n / 2$.

Deterministic algorithm?

- Sort numbers, take k th smallest.
- $O(n \log n)$.

More generally

Problem. Given a set of numbers $S=\left\{a_{1}, \ldots, a_{n}\right\}$ and number k, return k th smallest number. (Assume no duplicates)

Special cases:

- $k=1$: minimum element $O(n)$
- $k=n$: maximum element $O(n)$.

Why is it $O(n \log n)$ for $k=n / 2$?

Divide and Conquer Algorithm

- Choose splitter (or pivot) $a_{i} \in S$
- Form sets $S^{-}=\left\{a_{j}: a_{j}<a_{i}\right\}, S^{+}=\left\{a_{j}: a_{j}>a_{i}\right\}$.

If:

- $\left|S^{-}\right|=k-1: a_{i}$ is the target.
- $\left|S^{-}\right| \geq k$: recurse on $\left(S^{-}, k\right)$.
- $\left|S^{-}\right|<k-1$, recurse on $\left(S^{+}, k-\left(\left|S^{-}\right|+1\right)\right)$.

Pseudocode

SElect(S, k):

Choose splitter $a_{i} \in S$.
for each $a_{j} \in S$ do
Put $a_{j} \in S^{-}$if $a_{j}<a_{i}$.
Put $a_{j} \in S^{+}$if $a_{j}>a_{i}$.
end for
If $\left|S^{-}\right|=k-1$, then return a_{i}.
If $\left|S^{-}\right| \geq k$, return $\operatorname{Select}\left(S^{-}, k\right)$.
Else, return $\operatorname{SElEct}\left(S^{+}, k-\left(\left|S^{-}\right|+1\right)\right)$.
Looks kind of like quicksort. . .
Fact. Algorithm is correct.

Randomized Splitters

Idea. Choose splitter uniformly at random.
Analysis. Phase j when $n(3 / 4)^{j+1} \leq|S| \leq n(3 / 4)^{j}$.

- Claim. Expect to stay in phase j for two rounds.
- Call splitter central if separates $1 / 4$ fraction of elements.
- $\operatorname{Pr}[$ central splitter $]=1 / 2$.
- If X is number of attempts until central splitter,

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{j=1}^{\infty} j \operatorname{Pr}[X=j]=\sum_{j=1}^{\infty} j p(1-p)^{j-1} \\
& =\frac{p}{1-p} \sum_{j=1}^{\infty} j(1-p)^{j}=\frac{p}{1-p} \frac{(1-p)}{p^{2}} \\
& =\frac{1}{p}
\end{aligned}
$$

How to choose splitter?

We want recursive calls to work on much smaller sets.

- Best case, splitter is the median:

$$
T(n) \leq T(n / 2)+c n \Rightarrow O(n) \text { runtime }
$$

- Worst case, splitter is largest element:

$$
T(n) \leq T(n-1)+c n \Rightarrow O\left(n^{2}\right) \text { runtime }
$$

- Middle case, splitter seperates ϵn elements

$$
\begin{aligned}
& T(n) \leq T((1-\epsilon) n)+c n \\
& T(n) \leq c n\left[1+(1-\epsilon)+(1-\epsilon)^{2}+\ldots\right] \leq \frac{c n}{\epsilon}
\end{aligned}
$$

How can we stay close to the best case?

Analysis

- Let Y be a r.v. equal to number of steps of the algorithm
- $Y=Y_{0}+Y_{1}+Y_{2}+\ldots$ where Y_{j} is steps in phase j
- One iteration in phase j takes $c n(3 / 4)^{j}$ steps.
- $\mathbf{E}\left[Y_{j}\right] \leq 2 c n(3 / 4)^{j}$ since expect two iterations.

$$
\begin{aligned}
\mathbf{E}[Y] & =\sum_{j} \mathbf{E}\left[Y_{j}\right] \leq \sum_{j} 2 c n(3 / 4)^{j} \\
& =2 c n \sum_{j}(3 / 4)^{j} \leq 8 c n
\end{aligned}
$$

Theorem
Expected running time of $\operatorname{SELECT}(n, k)$ is $O(n)$.

Applications

- Randomized median find in expected linear time

Quicksort (Sketch)

- Choose pivot at random. Form S^{-}, S^{+}.
- Recursively sort both.
- Concatenate together.

Theorem. Quicksort has expected $O(n \log n)$ time.

Approximation Algorithms

- We've seen important problems that are NP-complete. For these problems, should we just give up? No.
- Perhaps we can approximate them. For example, for a minimization problem can we design an algorithm such that whenever we run the algorithm we can guarantee that

$$
\frac{\text { value of our solution }}{\text { value of optimum solution }} \leq \alpha
$$

for some value of $\alpha \geq 1$. Such an algorithm is called an α-approximation algorithm.

Load Balancing

- Input. There are m machines and n jobs $\{1,2, \ldots, n\}$ to be done. The time it takes to do each job is $t_{1}, t_{2}, \ldots, t_{n}$.
- Goal. Divide the jobs between the m machines such that no machine does too much work, i.e., if $S_{1}, \ldots, S_{m} \subset\{1,2, \ldots, n\}$ are the set of jobs done by each machine then we want to minimize:

$$
T=\max \left(\sum_{i \in S_{1}} t_{i}, \ldots, \sum_{i \in S_{m}} t_{i}\right)
$$

i.e., the time taken by the last machine to finish their jobs.

- We say the total amount of time of jobs allocated to a machine is its load

Analysis: Part 1

- Let T^{*} be smallest possible value $\max \left(\sum_{i \in S_{1}} t_{i}, \ldots, \sum_{i \in S_{m}} t_{i}\right)$
- Lemma 1: $T^{*} \geq t_{i}$ for all $i=1,2, \ldots, n$.
- Proof: Some machine needs to do the i th job and that machine is going to take at least t_{i} time. The max time taken is at least the time this machine spends.
- Lemma 2: $T^{*} \geq\left(\sum_{i=1}^{n} t_{i}\right) / m$.
- Proof: If every machine took $<\left(\sum_{i=1}^{n} t_{i}\right) / m$ time, then the total amount of work done is $<\sum_{i=1}^{n} t_{i}$. But this is impossible since all the jobs need to be done.

A Simple Algorithm

- For $i=1$ to n :
- Assign job to the machine who currently has the smallest load.

Analysis: Part 2

- When a machine is assigned job i by the algorithm,

$$
\text { its new load }=\text { its old load }+t_{i}
$$

- Recall that we assigned the job to the machine with the smallest current load. The smallest current load is at most $\left(\sum_{i=1}^{n} t_{i}\right) / m$.
- Hence, by appealing to Lemma 1 and Lemma 2,

$$
\text { its new load }<\left(\sum_{i=1}^{n} t_{i}\right) / m+t_{i} \leq 2 T^{*}
$$

i.e., a machine can never be assigned more than a load of $2 T^{*}$.

- Hence, the algorithm is a 2-approximation.

An Improved Algorithm

- Sort the jobs such that $t_{1} \geq t_{2} \geq t_{3} \geq \ldots \geq t_{n}$
- For $i=1$ to n :
- Assign job to the machine who currently has the smallest load.

Analysis: Part 1

- Let T^{*} be smallest possible value $\max \left(\sum_{i \in S_{1}} t_{i}, \ldots, \sum_{i \in S_{m}} t_{i}\right)$
- Lemma 3: $T^{*} \geq 2 t_{m+1}$.
- Proof: Some machine must do at least two of the jobs $\{1,2, \ldots, m+1\}$, say jobs i and j. That machine takes at least $t_{i}+t_{j} \geq 2 t_{m+1}$ time.

Analysis: Part 2

- When a machine is assigned job i by the algorithm,

$$
\text { new load }=\text { old load }+t_{i}
$$

- Recall that we assigned the job to the machine with the smallest current load. The smallest current load is at most $\left(\sum_{i=1}^{n} t_{i}\right) / m$ and is 0 if $i \leq m$.
- Hence, if $i \leq m$ then by appealing to Lemma 1 ,

$$
\text { new load }=0+t_{i} \leq T^{*}
$$

- Hence, if $i \geq m+1$, by appealing to Lemma 2 and Lemma 3,
new load $<\left(\sum_{i=1}^{n} t_{i}\right) / m+t_{i} \leq T^{*}+t_{m+1} \leq T^{*}+T^{*} / 2=1.5 T^{*}$
- Hence, the algorithm is a 1.5-approximation since no machine can ever be assigned more than 1.5 times the optimum.

