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Announcements

» HW6 due tomorrow!

v

Extra Credit tomorrow as well
» Final on Friday 3:30-5:30 (Marcus Hall 131)

» We are trying our best on grades. ..

\4

Please fill out SRTI course evaluations and UCA evaluations.

Remarks on the final

» One problem you have already seen before
» Either homework or previous exam
» Covers everything fairly equally

» Big-Oh, Graphs, Greedy, Divide and Conquer, Dynamic
Programming, Network Flows, NP-Completeness, Randomized
Algs.

Today

» Randomized Median Finding
» Approximate Load Balancing

Randomized Algorithm

» Algorithms that make random choices.
» Can flip coins, roll dice, etc.
» Two types of randomized algorithms:

» Fail with some small probability.
» Always succeed but running time is random.

» How powerful are randomized algorithms?

Median Find

Problem. Given a set of numbers S = {ay,...,a,} the median is
the number in the middle if the numbers were sorted.

> If n is odd then kth smallest element where k = (n 4+ 1)/2.
> If nis even then kth smallest element where k = n/2.

Deterministic algorithm?

» Sort numbers, take kth smallest.
> O(nlogn).




More generally

Problem. Given a set of numbers S = {ay,...,a,} and number £,
return kth smallest number. (Assume no duplicates)

Special cases:

» k = 1: minimum element O(n)
> k =n: maximum element O(n).

Why is it O(nlogn) for k =n/2?

Divide and Conquer Algorithm

» Choose splitter (or pivot) a; € S
> Formsets S~ ={a; : a; < a;}, ST = {a; : aj > a;}.

If:

> |S7| =k —1: a; is the target.
> |S7| > k: recurse on (S, k).
> |ST| <k —1, recurse on (ST, k— (]ST| +1)).

Pseudocode

SELECT(S k):
Choose splitter a; € S.
for each a; € S do
Put a; € S™ if aj < a;.
Put a; € ST if a; > a;.
end for
If |S7| = k — 1, then return a;.
If |S~| > k, return SELECT(S ™, k).
Else, return SELECT(ST,k — (]S~ |+ 1)).

Looks kind of like quicksort. . .

Fact. Algorithm is correct.

How to choose splitter?
We want recursive calls to work on much smaller sets.
> Best case, splitter is the median:

T(n) < T(n/2) + cn = O(n) runtime

» Worst case, splitter is largest element:

T(n) < T(n — 1) + cn = O(n?) runtime

» Middle case, splitter seperates en elements
T(n) <T{(1—¢e)n)+cn

T(n) <cn {1+(1—e)+(1—e)2+...] o

<

How can we stay close to the best case?

Randomized Splitters

Idea. Choose splitter uniformly at random.

Analysis. Phase j when n(3/4)7+1 < |S| < n(3/4)7.

» Claim. Expect to stay in phase j for two rounds.
» Call splitter central if separates 1/4 fraction of elements.
> Pr[central splitter] = 1/2.
» If X is number of attempts until central splitter,

E[X] =) jPr[X =j]=> jp(1—-p)!
j=1 j=1
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Analysis

Let Y be a r.v. equal to number of steps of the algorithm
Y =Yy + Y1 +Ys+... where Y] is steps in phase j

One iteration in phase j takes cn(3/4)7 steps.

E[Y;] < 2en(3/4)7 since expect two iterations.
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E[Y) = Y B[Y)] < 3 20n(3/4)

= 2cn 2(3/4)'7 < 8cn
J

Theorem

Expected running time of SELECT(n,k) is O(n).




Applications

» Randomized median find in expected linear time
Quicksort (Sketch)

» Choose pivot at random. Form S~ S™.

> Recursively sort both.

» Concatenate together.

Theorem. Quicksort has expected O(nlogn) time.

Approximation Algorithms

» We've seen important problems that are NP-complete. For these
problems, should we just give up? No.

» Perhaps we can approximate them. For example, for a
minimization problem can we design an algorithm such that
whenever we run the algorithm we can guarantee that

value of our solution

value of optimum solution —

for some value of a > 1. Such an algorithm is called an
«a-approximation algorithm.

Load Balancing

> Input. There are m machines and n jobs {1,2,...,n} to be
done. The time it takes to do each job is t,to,...,t,.

» Goal. Divide the jobs between the m machines such that no

machine does too much work, i.e., if S1,..., 5, C {1,2,...,n}
are the set of jobs done by each machine then we want to
minimize:

T = max Zti""= Z t;

i.e., the time taken by the last machine to finish their jobs.

» We say the total amount of time of jobs allocated to a machine is
its load

A Simple Algorithm

» Fori=1ton:

> Assign job to the machine who currently has the smallest load.

Analysis: Part 1

> Let T* be smallest possible value max (Y e, ti, - - - > Xoies,, ti)
> Lemma 1: T* > ¢t; foralli=1,2,...,n.

» Proof: Some machine needs to do the ith job and that machine
is going to take at least ¢; time. The max time taken is at least
the time this machine spends.

> Lemma 2: T > (3" t;)/m.

> Proof: If every machine took < (3°iL; ¢;)/m time, then the total
amount of work done is < it ; t;. But this is impossible since
all the jobs need to be done.

Analysis: Part 2

» When a machine is assigned job i by the algorithm,

its new load = its old load + ¢;
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Recall that we assigned the job to the machine with the smallest
current load. The smallest current load is at most (37, t;)/m.

» Hence, by appealing to Lemma 1 and Lemma 2,

n

its new load < (Z ti)/m+t; <2T*
i=1

i.e., a machine can never be assigned more than a load of 27™.
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Hence, the algorithm is a 2-approximation.




An Improved Algorithm

> Sort the jobs such that t; >ty >t3> ... > t,

» Fori=1ton:

» Assign job to the machine who currently has the smallest load.

Analysis: Part 1

> Lemma 3: T > 2t,,41.

» Proof: Some machine must do at least two of the jobs
{1,2,...,m+ 1}, say jobs i and j. That machine takes at least
ti +t; > 2t 41 time.

Analysis: Part 2

» When a machine is assigned job ¢ by the algorithm,
new load = old load + ¢;

> Recall that we assigned the job to the machine with the smallest
current load. The smallest current load is at most (3_;; t;)/m
and is 0 if 7« < m.

» Hence, if i < m then by appealing to Lemma 1,
new load =0 +¢; <T*

> Hence, if i > m + 1, by appealing to Lemma 2 and Lemma 3,

n
new load < (Zti)/m +t <T" 4+t <T*+T"/2=15T"
i=1
> Hence, the algorithm is a 1.5-approximation since no machine can
ever be assigned more than 1.5 times the optimum.




