	Announcements
CMPSCI 311: Introduction to Algorithms Akshay Krishnamurthy University of Massachusetts Last Compiled: January 29, 2018	 Homework 1 released (Due 2/7 11:59pm) Quiz 1 out (Due 1/30 11:59pm) Discussion section Friday
Plan	Review: Asymptotics
 Review: Asymptotics O(·), Ω(·), Θ(·) Running time analysis Graphs Motivation and definitions Graph traversal 	Definition $f(n) = O(g(n))$ if there exists n_0, c such that for all $n \ge n_0, f(n) \le cg(n)$. • g is an asymptotic upper bound on f . Definition $f(n) = \Omega(g(n))$ if $g(n) = O(f(n))$. • g is an asymptotic lower bound on f . Definition $f(n) = \Theta(g(n))$ if $f(n) = O(g(n))$ and $g(n) = O(f(n))$. • g is an asymptotically tight bound on f .
Algorithm design	Running Time Analysis
 Formulate the problem precisely Design an algorithm to solve the problem Prove the algorithm is correct Analyze the algorithm's running time 	 Mathematical analysis of worst-case running time of an algorithm as function of input size. Why these choices? Mathematical: describes the <i>algorithm</i>. Avoids hard-to-control experimental factors (CPU, programming language, quality of implementation), while still being predictive. Worst-case: just works. ("average case" appealing, but hard to analyze) Function of input size: allows predictions. What will happen on a new input?

Running time analysis	Polynomial Time
 Mathematical analysis of worst-case running time of an algorithm as function of input size. To prove O(f(n)): Argue that for all n and for all inputs of size n the number of primitive operations is O(f(n)). To prove Ω(g(n)): Argue that for all n, there exists some input of size n where the number of primitive operations is Ω(g(n)). 	 Working definition of efficient Definition: an algorithm runs in polynomial time if the number of primitive execution steps is at most cn^d, where n is the input size and c and d are constants. Matches practice: almost all practically efficient algorithms have this property Usually distinguishes a clever algorithm from a "brute force" approach (n^d = O(2ⁿ) for all constant d). Refutable: gives us a way of saying an algorithm is not efficient, or that no efficient algorithm exists.
Plan • Review: Asymptotics • $O(\cdot), \Omega(\cdot), \Theta(\cdot)$ • Running time analysis • Graphs • Motivation and definitions • Graph traversal	 Questions Facebook: how many "degrees of separation" between me and Barack Obama? Google Maps: what is the shortest driving route from South Hadley to Florida? Can we build algorithms to answer these questions?
Networks	<figure></figure>

Using Graph Traversal	Finding Connected Components
Definition : the connected component $C(v)$ of node v is the set of all nodes with a path to v . Easy claim : for any two nodes s and t either $C(s) = C(t)$, or $C(s)$ and $C(t)$ are disjoint. Picture/example on board	Traverse entire graph even if not connected. Extract connected components. while There is some unexplored node s do BFS $(s) ightarrow Run BFS$ starting from s . Extract connected component $C(s)$. end while Running time? What's the running time of BFS?
Summary So Far	Representing a graph
 Graph – definitions Graph traversals – BFS, DFS, and some properties Finding connected components Next – Implementation and run-time analysis. 	 Adjacency List Representation. Nodes numbered 1,,n. Adj[v] points to a list of all of v's neighbors. Example
Implementing BFS	BFS Implementation Let A = Queue of discovered nodes (FIFO) Traverse(s) Put s in A while A is not empty do
 Maintain set of explored nodes and discovered Explored = have seen this node and explored its outgoing edges Discovered = the "frontier". Have seen the node, but not explored its outgoing edges. Picture on board 	Take a note energy de Take a note w from A if v is not marked "explored" then Mark v as "explored" for each edge (v, w) incident to v do Put w in A \triangleright w is discovered end for end if end while Note: one part of this algorithm seems really dumb. Why? Can put multiple copies of a node in A. ("Rediscover it many times")

BFS Implementation	Summary
Let $A = Queue of discovered nodes (FIFO)$ Traverse(s) Put s in A while A is not empty do Take a node v from A if v is not marked "explored" then Mark v as "explored" for each edge (v, w) incident to v do Put w in A end for end if end while Is this BFS?	 Definitions G = (V, E), n = V , m = E neighbor, incident, cycle, path, connected BFS and DFS Two ways to traverse a graph, each produces a tree BFS tree: shallow and wide ("bushy") DFS tree: deep and narrow ("scraggly") Connected Components