CMPSCI 311: Introduction to Algorithms
Akshay Krishnamurthy
University of Massachusetts
Last Compied: January 29, 2018

Plan	
	Review: Asymptotics
	- $O(\cdot), \Omega(\cdot), \Theta(\cdot)$
	- Running time analysis
	- Motivation and definitions
	- Graph traversal

Review: Asymptotics

Definition $f(n)=O(g(n))$ if there exists n_{0}, c such that for all $n \geq n_{0}, f(n) \leq c g(n)$.

- g is an asymptotic upper bound on f.

Definition $f(n)=\Omega(g(n))$ if $g(n)=O(f(n))$.

- g is an asymptotic lower bound on f.

Definition $f(n)=\Theta(g(n))$ if $f(n)=O(g(n))$ and $g(n)=O(f(n))$.

- g is an asymptotically tight bound on f.
- Homework 1 released (Due 2/7 11:59pm)
- Quiz 1 out (Due $1 / 30$ 11:59pm)
- Discussion section Friday

Announcements

Algorithm design

- Formulate the problem precisely
- Design an algorithm to solve the problem
- Prove the algorithm is correct
- Analyze the algorithm's running time

Running Time Analysis

Mathematical analysis of worst-case running time of an algorithm as function of input size. Why these choices?

- Mathematical: describes the algorithm. Avoids hard-to-control experimental factors (CPU, programming language, quality of implementation), while still being predictive.
- Worst-case: just works. ("average case" appealing, but hard to analyze)
- Function of input size: allows predictions. What will happen on a new input?

Running time analysis

Mathematical analysis of worst-case running time of an algorithm as function of input size.

- To prove $O(f(n))$: Argue that for all n and for all inputs of size n the number of primitive operations is $O(f(n))$.
- To prove $\Omega(g(n))$: Argue that for all n, there exists some input of size n where the number of primitive operations is $\Omega(g(n))$.

Plan	
	Review: Asymptotics
	- $O(\cdot), \Omega(\cdot), \Theta(\cdot)$
	Running time analysis
	- Mraphs
	- Graph traversal

Networks	

Questions

- Facebook: how many "degrees of separation" between me and Barack Obama?
- Google Maps: what is the shortest driving route from South Hadley to Florida?

Can we build algorithms to answer these questions?

Networks

Graphs

A graph is a mathematical representation of a network

- Set of nodes (vertices) V
- Set of pairs of nodes (edges) E

Graph $G=(V, E)$

Example: Internet in 1970

Example: Internet in 1970

Definitions:

Path, cycle, path length, distance between two nodes

Example: Internet in 1970

Definitions

Connected. Connected components.

Example: Internet in 1970

Definitions:

Tree $=$ a connected undirected graph that does not contain a cycle Rooted vs. unrooted trees

Thought experiment. World social graph. Is it connected? Is there a path between you and Barack Obama? How can you tell?

Answer: graph traversal! (BFS/DFS)

Breadth-First Search: Layers

Define layer $L_{i}=$ all nodes at distance exactly i from s

Layers

- $L_{0}=\{s\}$
- $L_{1}=$ all neighbors of L_{0}
- $L_{2}=$ all nodes with an edge to L_{1} that don't belong to L_{0} or L_{1}
- ...
- $L_{i+1}=$ nodes with an edge to L_{i} that don't belong to any earlier layer.

$$
L_{i+1}=\left\{v: \exists(u, v) \in E, u \in L_{i}, v \notin\left(L_{0} \cup \ldots \cup L_{i}\right)\right\}
$$

Observation: There is a path from s to t if and only if t appears in some layer.

BFS Tree

We can use BFS to make a tree

Breadth First Search

Traverse graph by exploring outward from starting node by distance.
"Expanding wave"

BFS

Exercise: draw the BFS layers for a BFS starting from MIT

BFS Tree

Claim: let T be the tree discovered by BFS on graph $G=(V, E)$, and let (x, y) be any edge of G. Then the layer of x and y in T differ by at most 1 .
Proof on board

BFS and non-tree edges

Claim: let T be the tree discovered by BFS on graph $G=(V, E)$, and let (x, y) be any edge of G. Then the layer of x and y in T differ by at most 1 .
Proof

- Suppose $x \in L_{i}$ and $y \in L_{j}$ with $i<j-1$ but edge (x, y) exists.
- When BFS visits x, either y is already discovered or not.
- If y is already discovered, then $j \leq i$. Contradiction.
- Otherwise since $(x, y) \in E, y$ is added to L_{i+1}. Contradiction.

DFS

Depth-first search: keep exploring from the most recently added node until you have to backtrack.
Example.

DFS Tree

Claim: let T be a depth-first search tree for graph $G=(V, E)$, and let (x, y) be an edge that is in G but not T (a "non-tree edge"). Then either x is an ancestor of y or y is an ancestor of x in T. proof on board

A More General Strategy

To explore the connected component, add any node v for which

- (u, v) is an edge
- u is explored, but v is not

Picture on board

Recursive DFS

DFS (u)
Mark u as "Explored"
for each edge (u, v) incident to u do
if v is not marked "Explored" then
Recursively invoke DFS (v)
end if
end for
Example on board

DFS and Non-tree edges

Claim: let T be a depth-first search tree for graph $G=(V, E)$, and let (x, y) be an edge that is in G but not T (a "non-tree edge").
Then either x is an ancestor of y or y is an ancestor of x in T.
Proof

- Suppose not and suppose that x is reached first by DFS.
- Before leaving x, we must examine (x, y).
- Since $(x, y) \notin T, y$ must have been explored by this time.
- But y was not explored when we arrived at x by assumption.
- Thus y was explored during the execution of $\operatorname{DFS}(x)$.
- Implies x is ancestor of y.

Using Graph Traversal

Definition: the connected component $C(v)$ of node v is the set of all nodes with a path to v.

Easy claim: for any two nodes s and t either $C(s)=C(t)$, or $C(s)$ and $C(t)$ are disjoint.
Picture/example on board

Finding Connected Components

Traverse entire graph even if not connected.
Extract connected components.

```
while There is some unexplored node s do
            BFS(s)
                                    Run BFS starting from s.
            Extract connected component C(s)
end while
```

Running time?
What's the running time of BFS?

Summary So Far

- Graph - definitions
- Graph traversals - BFS, DFS, and some properties
- Finding connected components
- Next - Implementation and run-time analysis.

Implementing BFS

Maintain set of explored nodes and discovered

- Explored $=$ have seen this node and explored its outgoing edges
- Discovered = the "frontier". Have seen the node, but not explored its outgoing edges.

Picture on board

Representing a graph

Adjacency List Representation.

- Nodes numbered $1, \ldots, n$.
- Adj $[v]$ points to a list of all of v 's neighbors.
- Example

BFS Implementation

Let $A=$ Queue of discovered nodes (FIFO)
Traverse (s)
Put s in A
while A is not empty do
Take a node v from A
if v is not marked "explored" then
Mark v as "explored"
for each edge (v, w) incident to v do
Put w in $A \quad \triangleright w$ is discovered
end for
end if
end while
Note: one part of this algorithm seems really dumb. Why?
Can put multiple copies of a node in A. ("Rediscover it many times")

BFS Implementation

Let $A=$ Queue of discovered nodes (FIFO)
Traverse (s)
Put s in A
while A is not empty do
Take a node v from A
if v is not marked "explored" then
Mark v as "explored"
for each edge (v, w) incident to v do
Put w in $A \quad \triangleright w$ is discovered
end for
end if
end while
Is this BFS?

Summary

Definitions

- $G=(V, E), n=|V|, m=|E|$
- neighbor, incident, cycle, path, connected

BFS and DFS

- Two ways to traverse a graph, each produces a tree
- BFS tree: shallow and wide ("bushy")
- DFS tree: deep and narrow ("scraggly")
- Connected Components

