	Plan
CMPSCI 311: Introduction to Algorithms Akshay Krishnamurthy University of Massachusetts Last Compiled: February 5, 2018	 Review: Quiz 1 questions Breadth First Search Depth First Search Traversal Implementation and Running Time Traversal Applications Directed Graphs
Recall	Adjacency List Representation
 Graph G = (V, E) Set of nodes V of size n Set of edges E of size m 	 Adjacency List Representation. Nodes numbered 1,,n. Adj[v] points to a list of all of v's neighbors.
BFS Description	DFS Descriptions
Define layer L_i = all nodes at distance exactly i from s . Layers $L_0 = \{s\}$ L_1 = all neighbors of L_0 L_2 = all nodes with an edge to L_1 that don't belong to L_0 or L_1 \dots L_{i+1} = nodes with an edge to L_i that don't belong to any earlier layer. $L_{i+1} = \{v : \exists (u, v) \in E, u \in L_i, v \notin (L_0 \cup \cup L_i)\}$	Depth-first search: keep exploring from the most recently discovered node until you have to backtrack. DFS(u) Mark u as "Explored" for each edge (u, v) incident to u do if v is not marked "Explored" then Recursively invoke DFS(v) end if end for

DFS Implementation	Back to Connected Components
Let $A = \text{empty Stack structure of discovered nodes}$ Traverse(s) Put s in A while A is not empty do Take a node v from A if v is not marked "explored" then Mark v as "explored" for each edge (v, w) incident to v do Put w in A end for end if end while Is this actually DFS? Yes What's the running time?	FindCC(G) while There is some unexplored node s do BFS(s) Extract connected component $C(s)$. end while Running time for finding connected components? Naive: $O(n + m)$ for each component $\Rightarrow O(c(n + m))$ if c components. Better: BFS on component C only works on nodes/edges in C . Running time is $O(\sum_C V(C) + E(C)) = O(n + m)$.
Bipartite Graphs	Bipartite Testing
Definition Graph $G = (V, E)$ is bipartite if V can be partitioned into sets X, Y such that every edge has one end in X and one in Y . Example Student-College Graph in stable matching Counter example Cycle of length k for k odd. Claim If G is bipartite then it cannot contain an odd cycle.	 Question Given G = (V, E), is G bipartite? How do we design an algorithm to test bipartiteness? BFS(s) for any s, keep track of layers. Nodes in odd layers get color blue, even get color red. After, check all edges have different colored endpoints. Running time? O(n + m).
Analysis of Bipartite Testing	Directed Graphs
 Claim After running BFS on a connected graph G, either, There are no edges between two nodes of the same layer ⇒ G is bipartite. There is an edge between two nodes of the same layer ⇒ G has an odd cycle, is not bipartite. G bipartite if and only if no odd cycles. 	 Directed Graph G = (V, E). V is a set of vertices/nodes. E is a set of ordered pairs (u, v). Express asymmetrical relationship Examples Twitter network, course schedule, web graph.

Topological Sorting Analysis

Graphs Summary

- In a DAG, there is always a node v with no incoming edges.
- \blacktriangleright Removing a node v from a DAG, produces a new DAG.
- Any node with no incoming edges can be first in topological ordering.

Theorem G is a DAG if and only if G has a topological ordering.

- ► Graph Traversal
 - ► BFS/DFS, Connected Components, Bipartite Testing
 - Traversal Implementation and Analysis
- Directed Graphs
 - Strong Connectivity
 - Directed Acyclic Graphs
 - Topological ordering