

Recall

- Graph $G=(V, E)$
- Set of nodes V of size n
- Set of edges E of size m

Plan

- Review:
- Quiz 1 questions
- Breadth First Search
- Depth First Search
- Traversal Implementation and Running Time
- Traversal Applications
- Directed Graphs

Adjacency List Representation

Adjacency List Representation.

- Nodes numbered $1, \ldots, n$.
- Adj $[v]$ points to a list of all of v 's neighbors.

BFS Description

Define layer $L_{i}=$ all nodes at distance exactly i from s

Layers

- $L_{0}=\{s\}$
- $L_{1}=$ all neighbors of L_{0}
- $L_{2}=$ all nodes with an edge to L_{1} that don't belong to L_{0} or L_{1}
- ...
- $L_{i+1}=$ nodes with an edge to L_{i} that don't belong to any earlier layer.

$$
L_{i+1}=\left\{v: \exists(u, v) \in E, u \in L_{i}, v \notin\left(L_{0} \cup \ldots \cup L_{i}\right)\right\}
$$

DFS Descriptions

Depth-first search: keep exploring from the most recently discovered node until you have to backtrack.

DFS(u)
Mark u as "Explored"
for each edge (u, v) incident to u do
if v is not marked "Explored" then
Recursively invoke DFS (v)
end if
end for

Traversal Implementations

Maintain set of explored nodes and discovered

- Explored $=$ have seen this node and explored its outgoing edges
- Discovered $=$ the "frontier". Have seen the node, but not explored its outgoing edges

Generic Graph Traversal

Let $A=$ data structure of discovered nodes
Traverse (s)
Put s in A
while A is not empty do
Take a node v from A
if v is not marked "explored" then
Mark v as "explored"
for each edge (v, w) incident to v do
Put w in $A \quad \triangleright w$ is discovered
end for
end if
end while
Note: one part of this algorithm seems really dumb. Why? Can put multiple copies of a single node in A.

Generic Graph Traversal

Let $A=$ data structure of discovered nodes
Traverse (s)
Put s in A
while A is not empty do
Take a node v from A
if v is not marked "explored" then
Mark v as "explored"
for each edge (v, w) incident to v do
if w not marked "discovered" then
mark w as "discovered"
Put w in A
end if
end for
end if
end while

Question 1: If A is a queue (FIFO) is this BFS?
Question 2: If A is a stack (LIFO) is this DFS?
Interlude (Data Structures)

Linked List:

- Always remove items from front (Head)
- Queue: Insert at Tail (FIFO)
- Stack: Insert at Head (LIFO)
- Insert/Removal are $O(1)$ operations.

Discovered?

- With discovered array, it's not DFS! (So let's not use it)

Let $A=$ data structure of discovered nodes
Traverse (s)
Put s in A
while A is not empty do
Take a node v from A
if v is not marked "explored" then
Mark v as "explored"
for each edge (v, w) incident to v do Put w in A
end for
end if
end while
BFS: A is a queue (FIFO)
DFS: A is a stack (LIFO)

BFS Implementation

Let $A=$ empty Queue structure of discovered nodes
Traverse (s)
Put s in A
while A is not empty do
Take a node v from A
if v is not marked "explored" then
Mark v as "explored"
for each edge (v, w) incident to v do
Put w in $A \quad \triangleright w$ is discovered
end for
end if
end while
Is this actually BFS? Yes
Running time? $\Theta(n+m)$

DFS Implementation

Let $A=$ empty Stack structure of discovered nodes
Traverse (s)
Put s in A
while A is not empty do
Take a node v from A
if v is not marked "explored" then
Mark v as "explored"
for each edge (v, w) incident to v do
Put w in $A \quad \triangleright w$ is discovered end for
end if
end while
Is this actually DFS? Yes
What's the running time?

Back to Connected Components

FindCC(G)
while There is some unexplored node s do BFS(s)
Extract connected component $C(s)$.
end while
Running time for finding connected components?
Naive: $O(n+m)$ for each component $\Rightarrow O(c(n+m))$ if c components.

Better:

- BFS on component C only works on nodes/edges in C.
- Running time is $O\left(\sum_{C}|V(C)|+|E(C)|\right)=O(n+m)$.

Bipartite Graphs

Definition Graph $G=(V, E)$ is bipartite if V can be partitioned into sets X, Y such that every edge has one end in X and one in Y.

Example Student-College Graph in stable matching
Counter example Cycle of length k for k odd
Claim If G is bipartite then it cannot contain an odd cycle.

Analysis of Bipartite Testing

Claim After running BFS on a connected graph G, either,

- There are no edges between two nodes of the same layer $\Rightarrow G$ is bipartite.
- There is an edge between two nodes of the same layer $\Rightarrow G$ has an odd cycle, is not bipartite.
G bipartite if and only if no odd cycles.

Bipartite Testing

Question Given $G=(V, E)$, is G bipartite?

How do we design an algorithm to test bipartiteness?

- BFS (s) for any s, keep track of layers.
- Nodes in odd layers get color blue, even get color red.
- After, check all edges have different colored endpoints

$$
\text { Running time? } O(n+m) \text {. }
$$

Directed Graphs

- Directed Graph $G=(V, E)$.
- V is a set of vertices/nodes.
- E is a set of ordered pairs (u, v).
- Express asymmetrical relationship

Examples Twitter network, course schedule, web graph.

Adjacency Lists

Maintain two lists.

- Enter $[v]$ contains all edges pointing to v.
- Leave $[v]$ contains all edges pointing from v.

Strong Connectivity

Definition G is strongly connected if for every $u, v \in V$, there is a path from u to v and from v to u.

Problem Test if G is strongly connected?
Definition The strongly connected component containing vertex s is the set of all nodes with paths to and from s.

Think about Can you find all SCCs in linear time?

Directed Acyclic Graphs

Definition A directed acyclic graph (DAG) is a directed graph with no cycles.

Example Course prerequisites

Topological Sorting

Definition A topological ordering of $G=(V, E)$ is an ordering $v_{1}, v_{2}, \ldots, v_{n}$ of the nodes, such that for all edges $\left(v_{i}, v_{j}\right) \in E$, we must have $i<j$.

Claim If G has a topological ordering, then G is a DAG.

Topological Sorting

Can you find a way to take all of the courses?

Topological sorting

Problem Given DAG G, compute a topological ordering for G.

- Does one always exist?
topo-sort(G)
while there are nodes remaining do
Find a node v with no incoming edges
Place v next in the order
Delete v and all of its outgoing edges from G
end while

Running time? $O\left(n^{2}+m\right)$ easy, $O(m+n)$ more clever.

Topological Sorting Analysis

- In a DAG, there is always a node v with no incoming edges.
- Removing a node v from a DAG, produces a new DAG.
- Any node with no incoming edges can be first in topological ordering.

Theorem G is a DAG if and only if G has a topological ordering.

Graphs Summary

- Graph Traversal
- BFS/DFS, Connected Components, Bipartite Testing
- Traversal Implementation and Analysis
- Directed Graphs
- Strong Connectivity
- Directed Acyclic Graphs
- Topological ordering

