
CMPSCI 311: Introduction to Algorithms
Lecture 6: More Greedy Algorithms

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: February 13, 2018

Announcements

I Quiz 3 due tonight!
I Homework 2 out (Due next wednesday 2/21)
I Homework 1 solutions posted
I Quiz 2 solutions

Recap: Interval Scheduling

I Notation: n shows, let show j start at time sj and finish at time
fj and we say two shows are compatible if they don’t overlap.

I How do we find the maximum subset of shows that are all
compatible? (e.g., How do we watch the most shows?)

I Answer: Order by finish time and choose shows greedly!

I Proof idea: Show that greedy “stays ahead” of other solutions.

Problem 2: Interval Partitioning

I Suppose you are in charge of UMass classrooms.

I There are n classes to be scheduled on a Monday where class j
starts at time sj and finishes at time fj

I Your goal is to schedule all the classes such that the minimum
number of classrooms get used throughout the day. Obviously
two classes that overlap can’t use the same room.

I Example: [1, 4], [2, 3], [2, 7], [4, 7], [3, 6], [6, 10], [5, 7]

Possible Greedy Approaches

I Suppose the available classrooms are numbered 1, 2, 3, . . .

I We could run a greedy algorithm. . . consider the lectures in some
natural order, and assign the lecture to the classroom with the
smallest number that is available.

I What’s a “natural order" for this problem?
I Start Time: Consider lectures in ascending order of sj .
I Finish Time: Consider lectures in ascending order of fj .
I Shortest Time: Consider lectures in ascending order of fj − sj .
I Fewest Conflicts: Let cj be number of shows which overlap

with show j. Consider shows in ascending order of cj .

I Not all of these orderings will result in the best solution. But
we’ll show that ordering by start-time gives an optimal result.

Order by start time

I Number rooms 1, 2, . . . ,
I Sort lectures by their start time sj (assume s1 ≤ s2 ≤ . . . ≤ sn)
I For j = 1, . . . , n

I Assign lecture j to available room with the smallest index.
I For all occupied rooms rt

I If lecture i is in rt and fi ≤ sj+1, make rt available.

I Running time: O(n log n). (But need to merge the fjs into the
sorted list)



Ordering by Start Time gives an optimal answer

I A key observation:
I Let the depth be the maximum number of lectures that are in

progress at exactly the same time.
I The number of class rooms needed by any schedule is ≥ depth.

I If d is the number of classrooms used by the greedy algorithm
that considers classes in order of start time. We’ll show d ≤
depth. Hence, d = depth and there can’t be a better schedule.
I Suppose lecture j is the first lecture that the greedy algorithm

assigns to classroom d.
I At time sj , there must be at least d lectures that are occurring.

Hence, d ≤ depth.

Problem 3: Scheduling to Minimize Lateness

I Suppose an overworked UMass student has n different
assignments due on the same day and each assignment has a
deadline. Suppose that assignment j will take the student tj

minutes and has deadine dj .

I If a student starts the assignment at sj , she finishes the
assignment at fj = sj + tj and let `j = max{0, fj − dj} be the
number of minutes she is late.

I Problem: In what order should she do the assignments if she
wants to minimize the maximum lateness L = maxj `j .

I Example: (t, d) = (5, 10), (1, 3), (3, 4), (2, 5)

Possible Greedy Approaches

I We could do the assignments in order of:
I Shortest Time: Consider in ascending order of tj .
I Earliest Deadline: Consider in ascending order of dj .
I Smallest Slack: Consider in ascending order of dj − tj .

I Not all of these orderings will result in the best solution. But we’ll
show that ordering by earliest deadline gives an optimal result.

Ordering by earliest deadline minimizes lateness: Part 1

I To simplify the notation assume d1 ≤ d2 ≤ d3 ≤ . . .

I Given a schedule S, we say there’s an inversion for jobs i and j if
di < dj but job j is scheduled before i. The schedule generated
by the greedy algorithm is the unique schedule in which there are
no inversions.

I Some important observations:
I There exists an optimal schedule with no idle time.
I If there are any inversions in a schedule, there is an inversion

involving two jobs that are scheduled consecutively.

Ordering by earliest deadline minimizes lateness: Part 2
I Claim: Given a schedule, swapping two adjacent, inverted jobs i

and j (where i < j) reduces the number of inversions by one and
does not increase the maximum lateness.
I Let `k be the lateness of job k before the swap and let `′

k be
the lateness afterwards.

I Note that `′
k = `k for all k other than k 6= i and k 6= j.

I Since i is finished earlier after the swap, `′
i ≤ `i

I If job j is now late,
`′

j = f ′
j − dj = fi − dj ≤ fi − di ≤ max{0, fi − di} = `i

I Hence max{`′
i, `′

j} ≤ max{`i, `j}
I Lemma: Ordering by the earliest deadline minimizes lateness.

I Suppose there’s a different schedule with inversions that has
lateness L.

I We can repeatedly use the above claim to transform it into a
schedule with no inversions that has lateness at most L.

Summary

I Greedy algorithms for scheduling
I Different “objectives” require different strategies

I On designing algorithms
I Attack from both sides, try to build counter examples

I On proof strategies
I Greedy “stays ahead”
I Exchange arguments


