| CMPSCI 311: Introduction to Algorithms |
| :---: |
| Lecture 6: More Greedy Algorithms |
| Akshay Krishnamurthy |
| University of Massachusetts |
| Last Compiled: Februar 13, 2018 |

## Recap: Interval Scheduling

- Notation: $n$ shows, let show $j$ start at time $s_{j}$ and finish at time $f_{j}$ and we say two shows are compatible if they don't overlap.
- How do we find the maximum subset of shows that are all compatible? (e.g., How do we watch the most shows?)
- Answer: Order by finish time and choose shows greedly!
- Proof idea: Show that greedy "stays ahead" of other solutions.


## Possible Greedy Approaches

- Suppose the available classrooms are numbered $1,2,3, \ldots$
- We could run a greedy algorithm... consider the lectures in some natural order, and assign the lecture to the classroom with the smallest number that is available.
- What's a "natural order" for this problem?
- Start Time: Consider lectures in ascending order of $s_{j}$.
- Finish Time: Consider lectures in ascending order of $f_{j}$.
- Shortest Time: Consider lectures in ascending order of $f_{j}-s_{j}$.
- Fewest Conflicts: Let $c_{j}$ be number of shows which overlap with show $j$. Consider shows in ascending order of $c_{j}$.
- Not all of these orderings will result in the best solution. But we'll show that ordering by start-time gives an optimal result.


## Announcements

- Quiz 3 due tonight!
- Homework 2 out (Due next wednesday 2/21)
- Homework 1 solutions posted
- Quiz 2 solutions


## Problem 2: Interval Partitioning

- Suppose you are in charge of UMass classrooms.
- There are $n$ classes to be scheduled on a Monday where class $j$ starts at time $s_{j}$ and finishes at time $f_{j}$
- Your goal is to schedule all the classes such that the minimum number of classrooms get used throughout the day. Obviously two classes that overlap can't use the same room.
- Example: $[1,4],[2,3],[2,7],[4,7],[3,6],[6,10],[5,7]$
- Number rooms $1,2, \ldots$,
- Sort lectures by their start time $s_{j}$ (assume $s_{1} \leq s_{2} \leq \ldots \leq s_{n}$ )
- For $j=1, \ldots, n$
- Assign lecture $j$ to available room with the smallest index.
- For all occupied rooms $r_{t}$
- If lecture $i$ is in $r_{t}$ and $f_{i} \leq s_{j+1}$, make $r_{t}$ available.
- Running time: $O(n \log n)$. (But need to merge the $f_{j} \mathrm{~s}$ into the sorted list)


## Ordering by Start Time gives an optimal answer

- A key observation:
- Let the depth be the maximum number of lectures that are in progress at exactly the same time.
- The number of class rooms needed by any schedule is $\geq$ depth.
- If $d$ is the number of classrooms used by the greedy algorithm that considers classes in order of start time. We'll show $d \leq$ depth. Hence, $d=$ depth and there can't be a better schedule.
- Suppose lecture $j$ is the first lecture that the greedy algorithm assigns to classroom $d$.
- At time $s_{j}$, there must be at least $d$ lectures that are occurring Hence, $d \leq$ depth.


## Problem 3: Scheduling to Minimize Lateness

- Suppose an overworked UMass student has $n$ different assignments due on the same day and each assignment has a deadline. Suppose that assignment $j$ will take the student $t_{j}$ minutes and has deadine $d_{j}$.
- If a student starts the assignment at $s_{j}$, she finishes the assignment at $f_{j}=s_{j}+t_{j}$ and let $\ell_{j}=\max \left\{0, f_{j}-d_{j}\right\}$ be the number of minutes she is late.
- Problem: In what order should she do the assignments if she wants to minimize the maximum lateness $L=\max _{j} \ell_{j}$.
- Example: $(t, d)=(5,10),(1,3),(3,4),(2,5)$

Ordering by earliest deadline minimizes lateness: Part 1

- To simplify the notation assume $d_{1} \leq d_{2} \leq d_{3} \leq \ldots$
- Given a schedule $S$, we say there's an inversion for jobs $i$ and $j$ if $d_{i}<d_{j}$ but job $j$ is scheduled before $i$. The schedule generated by the greedy algorithm is the unique schedule in which there are no inversions.
- Some important observations:
- There exists an optimal schedule with no idle time.
- If there are any inversions in a schedule, there is an inversion involving two jobs that are scheduled consecutively.


## Summary

- Greedy algorithms for scheduling
- Different "objectives" require different strategies
- On designing algorithms
- Attack from both sides, try to build counter examples
- On proof strategies
- Greedy "stays ahead"
- Exchange arguments
- Lemma: Ordering by the earliest deadline minimizes lateness.
- Suppose there's a different schedule with inversions that has lateness $L$.
- We can repeatedly use the above claim to transform it into a schedule with no inversions that has lateness at most $L$.

