
CMPSCI 311: Introduction to Algorithms
Lecture 7: Shortest Paths

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: February 15, 2018

Announcements

I Discussion Friday
I No class monday (President’s day)
I Akshay’s Office hours Tu 5-6 just next week
I Midterm two weeks from today (I will post a practice exam)

Recap

I Greedy algorithms for interval scheduling
I Interval scheduling with no conflicts
I Interval scheduling minimizing number of rooms
I Minimizing maximum lateness

I Observation: problems have different combinatorial structure.

Shortest Paths Problem

I Given a weighted directed graph, let w(e) > 0 denote the length
of edge e and for a path P consisting of edges e1, e2, . . . , ek we
denote the length of this path as

`(P) = w(e1) + w(e2) + . . .+ w(ek)

I Fix a node s and let d(v) be the length of shortest s v path.

I Problem: Can we efficiently find d(v) for all nodes v ∈ V ?

A special case

I Question: What if all edges have weight w(e) = 1?

I Answer: Can just run BFS from s

I BFS layer Li = { nodes at distance i from s}.
I Question: What if all the edge weights are natural numbers?

Dijkstra’s Algorithm Intuition

I Run BFS on augmented graph where all edge weights are the
same.
I Let x divide all edge weights w(e).
I Split each edge into w(e)/x edges of length x with

intermediate nodes.

I Keep track of layers for the nodes from the original graph.

I Running time? O(n′ +m′) where m′ = ∑
ew(e)/x and

n′ = n+ ∑
e(w(e)/x− 2).

I Dijkstra’s Algorithm is a more efficient implementation of this
idea.

Dijkstra’s Algorithm

I Initialize: Let S = {s} be set of “explored nodes" and d(s) = 0.

I While S 6= V :
I Find node v 6∈ S that minimizes

π(v) = min
(u,v)∈E:u∈S

(d(u) + w(u,v))

I Add v to S and set d(v) = π(v)

I Running Time Analysis: The while loop occurs n− 1 times and
in each iteration finding v can be done in O(m) time. So total
run time of a naive implementation is O(mn) but a more clever
implementation exists that uses O(m logn) time.

Pseudocode

Q = Priority Queue, Explored = {}.
push (s, 0) onto Q
while Q is not empty do

(v, d) = item with smallest key from Q
if v is not marked "explored" then

Mark v as explored and set d[v] = d
for each edge (v, u) incident to v do

Push (u, d+ w(v, u)) onto Q.
end for

end if
end while

Proof of Correctness

I We prove by induction on |S| that for all u ∈ S, d(u) is the
length of the shortest s u path

I Base case: When |S| = 1, it’s obvious since s is only node in S
and d(s) = 0.

I Inductive hypothesis: Assume true for |S| = k ≥ 1.
I Let v be next node added to S and let (u, v) be preceeding

edge.
I Shortest s u path plus (u, v) is s v path of length π(v)
I Consider any s v path P . We will show `(P) ≥ π(v)
I Let (x, y) be the first edge in P that leaves S, and let P ′ be

the subpath from s to x.
I Then,

`(P) ≥ `(P ′) + w(x, y) ≥ d(x) + w(x, y) ≥ π(y) ≥ π(v)

Minimum Spanning Tree

I Consider an undirected connected graph G = (V,E) where each
edge e has weight w(e).

I Given a subset of edges A ⊂ E, define w(A) = ∑
e∈Aw(e) to be

the total weight of the edges in A.

I A spanning tree of G is a tree T that contains all nodes in G.

I Problem: Can we efficiently find the minimum spanning tree
(MST), i.e., spanning tree with minimum total weight?

I For simplicity, we will assume all edges have distinct weights.

Some intuition

I Fact 1: If all edges have unit weight, all trees are MSTs.

I Fact 2: Otherwise, smallest edge must be in MST.
I Proof is an exchange argument.

Greedy Approaches

I Consider the following greedy approaches:
I Sort the edges by increasing weight.
I Add next edge that doesn’t complete a cycle.

I Sort the edges by increasing weight.
I Let S = {s}.
I Add next edge (u, v) where u ∈ S, v 6∈ S. Add v to S.

I Sort the edges by decreasing weight. Remove the next edge
that doesn’t disconnect the graph.

I Which approach constructs a minimum spanning tree? All of
them! We’ll prove correctness for the first two.

Important Lemma: Finding edges in MST
I Cut Lemma: Let S ⊂ V and let e = (u, v) be the lightest edge

such that u ∈ S and v 6∈ S. The MST contains edge e.
I Note that this generalizes Fact 2 from above.

I Suppose T is a spanning tree that doesn’t include e. We’ll
construct a different spanning tree T ′ such that w(T ′) < w(T)
and hence T can’t be the MST.

I Since T is a spanning tree, there’s a u v path P in T .
Since the path starts in S and ends up outside S, there must
be an edge e′ = (u′, v′) on this path where u′ ∈ S, v′ 6∈ S.

I Let T ′ = T − {e′}+ {e}. This is a still spanning tree, since
any path in T that needed e′ can be routed via e instead. But
since e was the lightest edge between S and V \ S,

w(T ′) = w(T)−w(e′)+w(e) ≤ w(T)−w(e′)+w(e′) = w(T)

Prim’s Algorithm

I Prim’s Algorithm: Sort the edges by increasing weight.
I Let S = {s}.
I While S 6= V : Add next edge (u, v) where u ∈ S, v 6∈ S and

add v to S.

I Proof of Correctness:
I Let S be the set of nodes in the tree constructed so far.

I The next edge added to the tree is the lightest edge between S
and V \ S. Hence, the cut lemma implies e must be in the
MST.

Kruskal’s Algorithm

I Kruskal’s Algorithm: Sort the edges by increasing weight and
keep on add the next edge that doesn’t complete a cycle.

I Proof of Correctness:
I Suppose e = (u, v) is the next edge added.

I Let S be the set of nodes that can be reached from u before e
was added. Note that v 6∈ S since otherwise adding e would
have completed a cycle.

I No other edge between S and V \ S can have been
encountered before since if it had it would have been added
since it doesn’t complete a cycle. Hence e is the lightest edge
between S and V \ S. Therefore, the cut lemma implies e
must be in the MST.

