CMPSCI 311: Introduction to Algorithms
Lecture 7: Shortest Paths
Akshay Krishnamurthy
University of Massachusetts
Last Compied. Febrrany 15, 2018

Announcements

- Discussion Friday
- No class monday (President's day)
- Akshay's Office hours Tu 5-6 just next week
- Midterm two weeks from today (I will post a practice exam)

Recap

- Greedy algorithms for interval scheduling
- Interval scheduling with no conflicts
- Interval scheduling minimizing number of rooms
- Minimizing maximum lateness
- Observation: problems have different combinatorial structure.

A special case

- Question: What if all edges have weight $w(e)=1$?
- Answer: Can just run BFS from s
- BFS layer $L_{i}=\{$ nodes at distance i from $s\}$.
- Question: What if all the edge weights are natural numbers?

Shortest Paths Problem

- Given a weighted directed graph, let $w(e)>0$ denote the length of edge e and for a path P consisting of edges $e_{1}, e_{2}, \ldots, e_{k}$ we denote the length of this path as

$$
\ell(P)=w\left(e_{1}\right)+w\left(e_{2}\right)+\ldots+w\left(e_{k}\right)
$$

- Fix a node s and let $d(v)$ be the length of shortest $s \rightsquigarrow v$ path.
- Problem: Can we efficiently find $d(v)$ for all nodes $v \in V$?

Dijkstra's Algorithm Intuition

- Run BFS on augmented graph where all edge weights are the same.
- Let x divide all edge weights $w(e)$.
- Split each edge into $w(e) / x$ edges of length x with intermediate nodes.
- Keep track of layers for the nodes from the original graph.
- Running time? $O\left(n^{\prime}+m^{\prime}\right)$ where $m^{\prime}=\sum_{e} w(e) / x$ and $n^{\prime}=n+\sum_{e}(w(e) / x-2)$.
- Dijkstra's Algorithm is a more efficient implementation of this idea.

Dijkstra's Algorithm

- Initialize: Let $S=\{s\}$ be set of "explored nodes" and $d(s)=0$.
- While $S \neq V$:
- Find node $v \notin S$ that minimizes

$$
\pi(v)=\min _{(u, v) \in E: u \in S}\left(d(u)+w_{(u, v)}\right)
$$

- Add v to S and set $d(v)=\pi(v)$
- Running Time Analysis: The while loop occurs $n-1$ times and in each iteration finding v can be done in $O(m)$ time. So total run time of a naive implementation is $O(m n)$ but a more clever implementation exists that uses $O(m \log n)$ time.

Proof of Correctness

- We prove by induction on $|S|$ that for all $u \in S, d(u)$ is the length of the shortest $s \rightsquigarrow u$ path
- Base case: When $|S|=1$, it's obvious since s is only node in S and $d(s)=0$.
- Inductive hypothesis: Assume true for $|S|=k \geq 1$.
- Let v be next node added to S and let (u, v) be preceeding edge.
- Shortest $s \rightsquigarrow u$ path plus (u, v) is $s \rightsquigarrow v$ path of length $\pi(v)$
- Consider any $s \rightsquigarrow v$ path P. We will show $\ell(P) \geq \pi(v)$
- Let (x, y) be the first edge in P that leaves S, and let P^{\prime} be the subpath from s to x.
- Then,

$$
\ell(P) \geq \ell\left(P^{\prime}\right)+w(x, y) \geq d(x)+w(x, y) \geq \pi(y) \geq \pi(v)
$$

Some intuition

- Fact 1: If all edges have unit weight, all trees are MSTs.
- Fact 2: Otherwise, smallest edge must be in MST.
- Proof is an exchange argument.

Pseudocode

```
\(Q=\) Priority Queue, Explored \(=\{ \}\).
push ( \(s, 0\) ) onto \(Q\)
while \(Q\) is not empty do
        \((v, d)=\) item with smallest key from \(Q\)
    if \(v\) is not marked "explored" then
            Mark \(v\) as explored and set \(d[v]=d\)
            for each edge \((v, u)\) incident to \(v\) do
            Push \((u, d+w(v, u))\) onto \(Q\).
            end for
    end if
end while
```


Minimum Spanning Tree

- Consider an undirected connected graph $G=(V, E)$ where each edge e has weight $w(e)$.
- Given a subset of edges $A \subset E$, define $w(A)=\sum_{e \in A} w(e)$ to be the total weight of the edges in A.
- A spanning tree of G is a tree T that contains all nodes in G.
- Problem: Can we efficiently find the minimum spanning tree (MST), i.e., spanning tree with minimum total weight?
- For simplicity, we will assume all edges have distinct weights.

Greedy Approaches

- Consider the following greedy approaches:
- Sort the edges by increasing weight.
- Add next edge that doesn't complete a cycle.
- Sort the edges by increasing weight.
- Let $S=\{s\}$.
- Add next edge (u, v) where $u \in S, v \notin S$. Add v to S.
- Sort the edges by decreasing weight. Remove the next edge that doesn't disconnect the graph.
- Which approach constructs a minimum spanning tree? All of them! We'll prove correctness for the first two.

Important Lemma: Finding edges in MST

- Cut Lemma: Let $S \subset V$ and let $e=(u, v)$ be the lightest edge such that $u \in S$ and $v \notin S$. The MST contains edge e.
- Note that this generalizes Fact 2 from above.
- Suppose T is a spanning tree that doesn't include e. We'll construct a different spanning tree T^{\prime} such that $w\left(T^{\prime}\right)<w(T)$ and hence T can't be the MST.
- Since T is a spanning tree, there's a $u \rightsquigarrow v$ path P in T. Since the path starts in S and ends up outside S, there must be an edge $e^{\prime}=\left(u^{\prime}, v^{\prime}\right)$ on this path where $u^{\prime} \in S, v^{\prime} \notin S$.
- Let $T^{\prime}=T-\left\{e^{\prime}\right\}+\{e\}$. This is a still spanning tree, since any path in T that needed e^{\prime} can be routed via e instead. But since e was the lightest edge between S and $V \backslash S$,
$w\left(T^{\prime}\right)=w(T)-w\left(e^{\prime}\right)+w(e) \leq w(T)-w\left(e^{\prime}\right)+w\left(e^{\prime}\right)=w(T)$

Prim's Algorithm

- Prim's Algorithm: Sort the edges by increasing weight.
- Let $S=\{s\}$.
- While $S \neq V$: Add next edge (u, v) where $u \in S, v \notin S$ and add v to S.
- Proof of Correctness:
- Let S be the set of nodes in the tree constructed so far.
- The next edge added to the tree is the lightest edge between S and $V \backslash S$. Hence, the cut lemma implies e must be in the MST.

Kruskal's Algorithm

- Kruskal's Algorithm: Sort the edges by increasing weight and keep on add the next edge that doesn't complete a cycle.
- Proof of Correctness:
- Suppose $e=(u, v)$ is the next edge added.
- Let S be the set of nodes that can be reached from u before e was added. Note that $v \notin S$ since otherwise adding e would have completed a cycle.
- No other edge between S and $V \backslash S$ can have been encountered before since if it had it would have been added since it doesn't complete a cycle. Hence e is the lightest edge between S and $V \backslash S$. Therefore, the cut lemma implies e must be in the MST.

