
CMPSCI 311: Introduction to Algorithms
Lecture 8: Minimum Spanning Tree and Union Find

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: February 22, 2018

Announcements

I Homework 2 due tonight!
I No quiz this weekend
I Midterm 1 next Wednesday 7-9pm ISB 135
I Homework 3 out tonight

Recap

I Shortest paths problem: Given graph G = (V, E, w) with positive
edge weights, and a source node s, can we efficiently find the
length of the shortest path from s to v (called d(v)) for all v?
I If all edge weights are 1, then just run BFS.
I Otherwise, can run BFS on augmented graph (but can be slow)
I Dijkstra’s algorithm implements this idea in O(m log n) time.

Dijkstra’s algorithm

Q = Priority Queue, Explored = {}.
push (s, 0) onto Q
while Q is not empty do

(v, d) = item with smallest key from Q
if v is not marked "explored" then

Mark v as explored and set d[v] = d
for each edge (v, u) incident to v do

Push (u, d + w(v, u)) onto Q.
end for

end if
end while

Proof idea

I Inductively assume for all explored nodes the distances are correct.

I Prove next distance is correct by showing that any other path
must be longer.

I Note: Also works for directed graphs.

Minimum Spanning Tree

I Consider an undirected connected graph G = (V, E) where each
edge e has weight w(e).

I Given a subset of edges A ⊂ E, define w(A) = ∑
e∈A w(e) to be

the total weight of the edges in A.

I A spanning tree of G is a tree T that contains all nodes in G.

I Problem: Can we efficiently find the minimum spanning tree
(MST), i.e., spanning tree with minimum total weight?

I For simplicity, we will assume all edges have distinct weights.



Greedy Approaches

I Consider the following greedy approaches:
I Sort the edges by increasing weight.
I Add next edge that doesn’t complete a cycle.

I Sort the edges by increasing weight.
I Let S = {s}.
I Add next edge (u, v) where u ∈ S, v 6∈ S. Add v to S.

I Sort the edges by decreasing weight. Remove the next edge
that doesn’t disconnect the graph.

I Which approach constructs a minimum spanning tree? All of
them! We’ll prove correctness for the first two.

Important Lemma: Finding edges in MST

I Cut Lemma: Let S ⊂ V and let e = (u, v) be the lightest edge
such that u ∈ S and v 6∈ S. The MST contains edge e.
I Suppose T is a spanning tree that doesn’t include e. We’ll

construct a different spanning tree T ′ such that w(T ′) < w(T )
and hence T can’t be the MST.

I Since T is a spanning tree, there’s a u v path P in T .
Since the path starts in S and ends up outside S, there must
be an edge e′ = (u′, v′) on this path where u′ ∈ S, v′ 6∈ S.

I Let T ′ = T − {e′}+ {e}. This is a still spanning tree, since
any path in T that needed e′ can be routed via e instead. But
since e was the lightest edge between S and V \ S,

w(T ′) = w(T )−w(e′)+w(e) ≤ w(T )−w(e′)+w(e′) = w(T )

Prim’s Algorithm

I Prim’s Algorithm: Sort the edges by increasing weight.
I Let S = {s}.
I While S 6= V : Add next edge (u, v) where u ∈ S, v 6∈ S and

add v to S.

I Proof of Correctness:
I Let S be the set of nodes in the tree constructed so far.

I The next edge added to the tree is the lightest edge between S
and V \ S. Hence, the cut lemma implies e must be in the
MST.

I Runtime: O(m log m) not too hard. O(m + n log n) possible but
tricky

Kruskal’s Algorithm

I Kruskal’s Algorithm: Sort the edges by increasing weight and
repeatedly add the next edge that doesn’t complete a cycle.

I Proof of Correctness:
I Suppose e = (u, v) is the next edge added.

I Let S be the set of nodes that can be reached from u before e
was added. Note that v 6∈ S since otherwise adding e would
have completed a cycle.

I No other edge between S and V \ S can have been
encountered before since if it had it would have been added
since it doesn’t complete a cycle. Hence e is the lightest edge
between S and V \ S. Therefore, the cut lemma implies e
must be in the MST.

Kruskal Implementation: Union-Find

Idea: use clever data structure to maintain connected components
of growing spanning tree. Should support the following operation:

I Find(v): return name of set containing v
I Union(A, B): merge two sets

where A and B will correspond to connected components of the
edges that have been added so far.

for each edge e do
Let u and v be endpoints of e
if find(u) != find(v) then . Not in same component?

T = T ∪ {e}
Union(find(u), find(v)) . Merge components

end if
end for

Simple Implementation of Union-Find
I Each disjoint set is stored as a linked list of nodes where each

node consists of three data items:
I name of element
I “label" pointer to label of the set
I “next" pointer to next node in list

I There are three basic operations:
I Make-Set(v): Takes O(1) time to add a single node.

I Find(v): Takes O(1) time to follow pointer to label.

I Union-Set(u, v): O(size of smaller set).
I Update “next" pointer at end of longer list to point to start

of shorter list
I Update “label" pointers of shorter list to point to label of

other list
I Update auxiliary pointers and size information



Union-Find Analysis

Theorem: Consider a sequence of m operations including n
Make-Set operations. Total running time is O(m + n log n).

I Total time from Find and Make-Set: O(m)

I Total time from Union: O(n log n)
I Updating next pointers: O(n)

I Updating label pointers: O(n log n) because the label pointer
for a node can be updated at most log2 n times.

Hence, Kruskal’s algorithm can be implemented in time

O(m log m) + O(m + n log n) = O(m log m)

Other Greedy Problems

I Huffman Coding and data compression
I Minimum Cost Arborescence (e.g., MST in directed graphs)


