CMPSCI 311: Introduction to Algorithms

Lecture 9: Divide and Conquer

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: February 27, 2018

Announcements

Midterm Wednesday 7-9pm ISB 135

Homework 3 due next week

No discussion this week, yes quiz

Ibrahim'’s office hours change: Tuesday 12-1 CS 207
HW 1 graded (submit regrade request with issues)

vyvyvYyYVvYyy

Recap

> Greedy algorithms

» Schedule problems
> Shortest paths (Dijkstra's algorithm)
» MST (Prim, Kruskal)

» Efficient implementation with union-find data structure.

Algorithm Design Techniques

> Greedy

v

Divide and Conquer
» Dynamic Programming

Network Flows

v

Comparison
Greedy Divide and Conquer
Formulate problem ? ?
Design algorithm easy hard
Prove correctness hard easy
Analyze running time easy hard

Divide and Conquer: Recipe

» Divide problem into several parts
» Solve each part recursively
» Combine solutions to sub-problems into overall solution

» Common example

» Problem of size n — two parts of size n/2.
» Combine solutions in O(n) time.

Example: Mergesort

MergeSort(Arr)
if length(Arr) < 2 then
Sort however you like, return sorted list.
else
middle = length(Arr)/2
L = MergeSort(Arr[0:middle])
R = MergeSort(Arr[middle:length(Arr)])
Return Merge(L, R)
end if

> Base case

> Recursive Steps

> Combine Step

Mergesort Running time

> Base Case: O(1).
> Recursive step: O(1) + 777
> Merge step: O(n).

Recurrence Relations

Let T'(n) be running time for inputs of length n.

<2T(n/2)+cn when n > 2
7(0),7(1),T(2) <c

How do we solve for T'(n)?

Solving recurrences

T(n) < 2T(n/2) + cn, T(2) <ec.
» Unravel recurrence
» Guess and check

» Partial substitution

Mergesort runtime: O(nlog,n).

Maximum Subsequence Sum (MSS)

Input: array A of n numbers

Find: value of the largest subsequence sum

Ali] + A[i + 1] + ... + A[j]

(Note: empty subsequence (j < i) is allowed and has sum zero)

What is a simple algorithm for MSS?

MSS(A)
Initialize all entries of n X n array B to zero
for i =1 ton do

sum =0
for j =i tondo
sum += Alj]
Bli,j] = sum
end for
end for

Return maximum entry of B3, j]

Running time? O(n?). Can we do better?

Divide-and-conquer for MSS

Recursive solution for MSS
Idea:

» Find MSS L in left half of array
» Find MSS R in right half of array

» Find MSS M for sequence that crosses the midpoint

Return max (L, R, M)

MSS Correctness?

MSS(Arr)

if length(Arr) == 1 then > Base case

return max(A[0],0)
end if
mid = length(Arr)/2 » |f MSS is contained in left half, then by induction we are correct
L = MSS(Arr[0:mid]), R = MSS(Arr[mid:length(Arr)]) > Recursive Steps . . o . .
Set sum = 0, I/ = 0. > Compute Left » If MSS is contained in right half, then by induction we are correct
for i = mid-1 down to 0 do . . .

sum += Arr[], L’ = max(L', sum). > Otherwise MSS spans midpoint.
end for) . . .

> =

Set sum — 0. ' — 0. > Compute Right L’ MSS on Iejft half endmgI at m|dp.0|nt.
for i = mid up to length(Arr)-1 do » R’ = MSS on right half starting at midpoint

sum += Arrfi], R’ = max(R’, sum). > L'+R’ = MSS spanning midpoint.
end for
return max(L, R, L' + R'). > Output max

MSS running time More recurrences

> Problem of size n — ¢ parts of size n/2.

» Base Case: O(1). » Combine solutions in O(n) time.
> Recursive step: O(1) + 777 R
> Merge step: O(n). ecurrence
Recurrence:
T(n) < ¢T(n/2) + cn, T(1) <e.
T(n) <2T(n/2) + cn, T(1) <ec. Qualitatively different behavior ¢ =1, ¢ =2, and ¢ > 2.

» Ifg=1, T(n) = O(n).
» If ¢=2, T(n) = O(nlogn).
» Ifg>2 T(n) = O(nlogz((l))_

Solves to O(nlogyn) just like Mergesort.

Proof for ¢ = 1 Proof for ¢ = 1

T(n) <T(n/2)+ cn, T(1) <e

T(n) <T(n/2)+ cn, T(1) <e.

> Partial substitution (with guess T'(n) < kn®
» Unravel the recurrence (g (n) <)

T(n) <T(n/2)+cn

T(n) <T(n/2)+cn § g
<T(n/4)+cn/2+cn <k(n/2)*+cn
<T(n/8) +cn/d+cn/2+cn = %ndJrcn

logy n—1 Set d =1k = 2c to get
Z en /2t
i=0

k
< 2cn T(n) < §n +cn=kn

Proof for ¢ > 2

T(n) < qT(n/2) + cn, T(1) <e
» Unravel the recurrence
T(n) < ¢T(n/2)+cn

< @PT(n/4) + cqn/2 + cn
< @PT(n/8) 4 cg*n/4 + cqn/2 + cn

Final calculations

> Use geometric series (3320 % = (1 — 1)/(r — 1))

T(n)<cn ;) (¢/2)' =cn 21
¢

(]/2771”((1/2)1%”
— ¢ nloga(a/2)
nn
q/2-1
— / ¢ nnlogfz(‘l)*l
q/2—-1

= 5 el = o)

T g/2-1

IN

logy n—1 ((q/2)]0g2 n_

)

Summary

With recurrence

T(n) < qT(n/2) + cn, T(1) <e

Always get

logy(n)—1

Tm)<en Y (af2)

i=0

> But series behaves differently for ¢ < 2,q = 2,9 > 2.

