

Recap	
- Greedy algorithms	
- Schedule problems	
- Shortest paths (Dijkstra's algorithm)	
	MST (Prim, Kruskal)
	. Efficient implementation with union-find data structure.

Comparison		
	Greedy	Divide and Conquer
Formulate problem	$?$	$?$
Design algorithm	easy	hard
Prove correctness	hard	easy
Analyze running time	easy	hard

- Greedy algorithms
- Schedule problems
- Shortest paths (Dijkstra's algorithm)

MST (Prim, Kruskal)

- Efficient implementation with union-find data structure.

Announcements

- Midterm Wednesday 7-9pm ISB 135
- Homework 3 due next week
- No discussion this week, yes quiz
- Ibrahim's office hours change: Tuesday 12-1 CS 207
- HW 1 graded (submit regrade request with issues)

Algorithm Design Techniques

- Greedy
- Divide and Conquer
- Dynamic Programming
- Network Flows

Divide and Conquer: Recipe

- Divide problem into several parts
- Solve each part recursively
- Combine solutions to sub-problems into overall solution
- Common example
- Problem of size $n \rightarrow$ two parts of size $n / 2$.
- Combine solutions in $O(n)$ time.

Example: Mergesort	
MergeSort(Arr)	
if length(Arr) ≤ 2 then	
Sort however you like, return sorted list.	
else	
middle $=$ length(Arr) $/ 2$	Base case
$\mathrm{L}=$ MergeSort(Arr[0:middle])	
$R=$ MergeSort(Arr[middle:length(Arr)])	
Return Merge(L, R)	
end if	

Solving recurrences

$$
T(n) \leq 2 T(n / 2)+c n, \quad T(2) \leq c
$$

- Unravel recurrence
- Guess and check
- Partial substitution

Mergesort runtime: $O\left(n \log _{2} n\right)$.

Mergesort Running time

- Base Case: $O(1)$.
- Recursive step: $O(1)+$???
- Merge step: $O(n)$.

Recurrence Relations

Let $T(n)$ be running time for inputs of length n.

$$
T(n) \leq 2 T(n / 2)+c n \quad \text { when } n \geq 2
$$

$T(0), T(1), T(2) \leq c$

How do we solve for $T(n)$?

What is a simple algorithm for MSS?

Input: array A of n numbers
Find: value of the largest subsequence sum

$$
A[i]+A[i+1]+\ldots+A[j]
$$

(Note: empty subsequence $(j<i)$ is allowed and has sum zero)

Maximum Subsequence Sum (MSS)

$\operatorname{MSS}(A)$
Initialize all entries of $n \times n$ array B to zero
for $i=1$ to n do
sum $=0$
for $j=i$ to n do
sum $+=A[j]$
$B[i, j]=$ sum
end for
end for
Return maximum entry of $B[i, j]$
Running time? $O\left(n^{2}\right)$. Can we do better?

Divide-and-conquer for MSS

Recursive solution for MSS

Idea:

- Find MSS L in left half of array
- Find MSS R in right half of array
- Find MSS M for sequence that crosses the midpoint

Return $\max (L, R, M)$

MSS Correctness?

- If MSS is contained in left half, then by induction we are correct
- If MSS is contained in right half, then by induction we are correct
- Otherwise MSS spans midpoint
- $\mathrm{L}^{\prime}=\mathrm{MSS}$ on left half ending at midpoint
- $\mathrm{R}^{\prime}=$ MSS on right half starting at midpoint
- $\mathrm{L}^{\prime}+\mathrm{R}^{\prime}=$ MSS spanning midpoint.

MSS running time

- Base Case: $O(1)$.
- Recursive step: $O(1)+$???
- Merge step: $O(n)$.

Recurrence:

$$
T(n) \leq 2 T(n / 2)+c n, \quad T(1) \leq c
$$

Solves to $O\left(n \log _{2} n\right)$ just like Mergesort.

Proof for $q=1$

$$
T(n) \leq T(n / 2)+c n, \quad T(1) \leq c .
$$

- Unravel the recurrence

$$
\begin{aligned}
T(n) & \leq T(n / 2)+c n \\
& \leq T(n / 4)+c n / 2+c n \\
& \leq T(n / 8)+c n / 4+c n / 2+c n \\
& \cdots \\
& \leq \sum_{i=0}^{\log _{2} n-1} c n / 2^{i} \\
& \leq 2 c n
\end{aligned}
$$

More recurrences

- Problem of size $n \rightarrow q$ parts of size $n / 2$.
- Combine solutions in $O(n)$ time.

Recurrence

$$
T(n) \leq q T(n / 2)+c n, \quad T(1) \leq c
$$

Qualitatively different behavior $q=1, q=2$, and $q>2$.

- If $q=1, T(n)=O(n)$.
- If $q=2, T(n)=O(n \log n)$.
- If $q>2, T(n)=O\left(n^{\log _{2}(q)}\right)$.

Proof for $q=1$

$$
T(n) \leq T(n / 2)+c n, \quad T(1) \leq c
$$

- Partial substitution (with guess $T(n) \leq k n^{d}$)

$$
\begin{aligned}
T(n) & \leq T(n / 2)+c n \\
& \leq k(n / 2)^{d}+c n \\
& =\frac{k}{2^{d}} n^{d}+c n
\end{aligned}
$$

Set $d=1 k=2 c$ to get

$$
T(n) \leq \frac{k}{2} n+c n=k n
$$

Proof for $q>2$

$$
T(n) \leq q T(n / 2)+c n, \quad T(1) \leq c .
$$

- Unravel the recurrence

$$
\begin{aligned}
T(n) & \leq q T(n / 2)+c n \\
& \leq q^{2} T(n / 4)+c q n / 2+c n \\
& \leq q^{3} T(n / 8)+c q^{2} n / 4+c q n / 2+c n \\
& \cdots \\
& \leq \sum_{i=0}^{\log _{2} n-1} c n\left(\frac{q}{2}\right)^{i}
\end{aligned}
$$

Final calculations

- Use geometric series $\left(\sum_{k=0}^{n-1} r^{k}=\left(r^{n}-1\right) /(r-1)\right)$

$$
\begin{aligned}
T(n) & \leq c n \sum_{i=0}^{\log _{2} n-1}(q / 2)^{i}=c n\left(\frac{(q / 2)^{\log _{2} n}-1}{q / 2-1}\right) \\
& \leq \frac{c}{q / 2-1} n(q / 2)^{\log _{2} n} \\
& =\frac{c}{q / 2-1} n n^{\log _{2}(q / 2)} \\
& =\frac{c}{q / 2-1} n n^{\log _{2}(q)-1} \\
& =\frac{c}{q / 2-1} n^{\log _{2}(q)}=O\left(n^{\log _{2}(q)}\right)
\end{aligned}
$$

Summary

With recurrence

$$
T(n) \leq q T(n / 2)+c n, \quad T(1) \leq c .
$$

Always get

$$
T(n) \leq c n \sum_{i=0}^{\log _{2}(n)-1}(q / 2)^{i}
$$

- But series behaves differently for $q<2, q=2, q>2$.

