
CMPSCI 311: Introduction to Algorithms
Lecture 9: Divide and Conquer

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: February 27, 2018

Announcements

I Midterm Wednesday 7-9pm ISB 135
I Homework 3 due next week
I No discussion this week, yes quiz
I Ibrahim’s office hours change: Tuesday 12-1 CS 207
I HW 1 graded (submit regrade request with issues)

Recap

I Greedy algorithms
I Schedule problems
I Shortest paths (Dijkstra’s algorithm)
I MST (Prim, Kruskal)

I Efficient implementation with union-find data structure.

Algorithm Design Techniques

I Greedy

I Divide and Conquer

I Dynamic Programming

I Network Flows

Comparison

Greedy Divide and Conquer
Formulate problem ? ?
Design algorithm easy hard
Prove correctness hard easy
Analyze running time easy hard

Divide and Conquer: Recipe

I Divide problem into several parts
I Solve each part recursively
I Combine solutions to sub-problems into overall solution

I Common example
I Problem of size n→ two parts of size n/2.
I Combine solutions in O(n) time.



Example: Mergesort

MergeSort(Arr)
if length(Arr) ≤ 2 then . Base case

Sort however you like, return sorted list.
else

middle = length(Arr)/2 . Recursive Steps
L = MergeSort(Arr[0:middle])
R = MergeSort(Arr[middle:length(Arr)])
Return Merge(L, R) . Combine Step

end if

Mergesort Running time

I Base Case: O(1).
I Recursive step: O(1) + ???
I Merge step: O(n).

Recurrence Relations

Let T (n) be running time for inputs of length n.

T (n) ≤ 2T (n/2) + cn when n ≥ 2
T (0), T (1), T (2) ≤ c

How do we solve for T (n)?

Solving recurrences

T (n) ≤ 2T (n/2) + cn, T (2) ≤ c.

I Unravel recurrence
I Guess and check
I Partial substitution

Mergesort runtime: O(n log2 n).

Maximum Subsequence Sum (MSS)

Input: array A of n numbers
Find: value of the largest subsequence sum

A[i] + A[i + 1] + . . . + A[j]

(Note: empty subsequence (j < i) is allowed and has sum zero)

What is a simple algorithm for MSS?

MSS(A)
Initialize all entries of n× n array B to zero
for i = 1 to n do

sum = 0
for j = i to n do

sum += A[j]
B[i, j] = sum

end for
end for
Return maximum entry of B[i, j]

Running time? O(n2). Can we do better?

Divide-and-conquer for MSS

Recursive solution for MSS

Idea:

I Find MSS L in left half of array

I Find MSS R in right half of array

I Find MSS M for sequence that crosses the midpoint

Return max(L, R, M)



MSS(Arr)
if length(Arr) == 1 then . Base case

return max(A[0], 0)
end if
mid = length(Arr)/2
L = MSS(Arr[0:mid]), R = MSS(Arr[mid:length(Arr)]) . Recursive Steps
Set sum = 0, L′ = 0. . Compute Left
for i = mid-1 down to 0 do

sum += Arr[i], L′ = max(L′, sum).
end for
Set sum = 0, R′ = 0. . Compute Right
for i = mid up to length(Arr)-1 do

sum += Arr[i], R′ = max(R′, sum).
end for
return max(L, R, L′ + R′). . Output max

MSS Correctness?

I If MSS is contained in left half, then by induction we are correct

I If MSS is contained in right half, then by induction we are correct

I Otherwise MSS spans midpoint.
I L’ = MSS on left half ending at midpoint
I R’ = MSS on right half starting at midpoint
I L’+R’ = MSS spanning midpoint.

MSS running time

I Base Case: O(1).
I Recursive step: O(1) + ???
I Merge step: O(n).

Recurrence:

T (n) ≤ 2T (n/2) + cn, T (1) ≤ c.

Solves to O(n log2 n) just like Mergesort.

More recurrences

I Problem of size n→ q parts of size n/2.
I Combine solutions in O(n) time.

Recurrence

T (n) ≤ qT (n/2) + cn, T (1) ≤ c.

Qualitatively different behavior q = 1, q = 2, and q > 2.

I If q = 1, T (n) = O(n).
I If q = 2, T (n) = O(n log n).
I If q > 2, T (n) = O(nlog2(q)).

Proof for q = 1

T (n) ≤ T (n/2) + cn, T (1) ≤ c.

I Unravel the recurrence

T (n) ≤ T (n/2) + cn

≤ T (n/4) + cn/2 + cn

≤ T (n/8) + cn/4 + cn/2 + cn

. . .

≤
log2 n−1∑

i=0
cn/2i

≤ 2cn

Proof for q = 1

T (n) ≤ T (n/2) + cn, T (1) ≤ c.

I Partial substitution (with guess T (n) ≤ knd)

T (n) ≤ T (n/2) + cn

≤ k(n/2)d + cn

= k

2d
nd + cn

Set d = 1 k = 2c to get

T (n) ≤ k

2n + cn = kn



Proof for q > 2

T (n) ≤ qT (n/2) + cn, T (1) ≤ c.

I Unravel the recurrence

T (n) ≤ qT (n/2) + cn

≤ q2T (n/4) + cqn/2 + cn

≤ q3T (n/8) + cq2n/4 + cqn/2 + cn

. . .

≤
log2 n−1∑

i=0
cn

(
q

2

)i

Final calculations

I Use geometric series (∑n−1
k=0 rk = (rn − 1)/(r − 1))

T (n) ≤ cn

log2 n−1∑

i=0
(q/2)i = cn

(
(q/2)log2 n − 1

q/2− 1

)

≤ c

q/2− 1n(q/2)log2 n

= c

q/2− 1nnlog2(q/2)

= c

q/2− 1nnlog2(q)−1

= c

q/2− 1nlog2(q) = O(nlog2(q))

Summary

With recurrence

T (n) ≤ qT (n/2) + cn, T (1) ≤ c.

Always get

T (n) ≤ cn

log2(n)−1∑

i=0
(q/2)i

I But series behaves differently for q < 2, q = 2, q > 2.


