	Announcements
CMPSCI 311: Introduction to Algorithms Lecture 9: Divide and Conquer Akshay Krishnamurthy University of Massachusetts	 Midterm Wednesday 7-9pm ISB 135 Homework 3 due next week No discussion this week, yes quiz Ibrahim's office hours change: Tuesday 12-1 CS 207 HW 1 graded (submit regrade request with issues)
Recap	Algorithm Design Techniques
 Greedy algorithms Schedule problems Shortest paths (Dijkstra's algorithm) MST (Prim, Kruskal) Efficient implementation with union-find data structure. 	 Greedy Divide and Conquer Dynamic Programming Network Flows
Comparison	Divide and Conquer: Recipe
GreedyDivide and ConquerFormulate problem?Design algorithmeasyProve correctnesshardProve correctnesshardAnalyze running timeeasyhard	 Divide problem into several parts Solve each part recursively Combine solutions to sub-problems into overall solution Common example Problem of size n → two parts of size n/2. Combine solutions in O(n) time.

Example: Mergesort	Mergesort Running time
$\begin{array}{llllllllllllllllllllllllllllllllllll$	• Base Case: $O(1)$. • Recursive step: $O(1) + ???$ • Merge step: $O(n)$. Recurrence Relations Let $T(n)$ be running time for inputs of length n . $T(n) \le 2T(n/2) + cn$ when $n \ge 2$ $T(0), T(1), T(2) \le c$ How do we solve for $T(n)$?
Solving recurrences	Maximum Subsequence Sum (MSS)
$T(n) \leq 2T(n/2) + cn, \qquad T(2) \leq c.$ • Unravel recurrence • Guess and check • Partial substitution Mergesort runtime: $O(n \log_2 n).$	Input: array A of n numbers Find: value of the largest subsequence sum A[i] + A[i + 1] + + A[j] (Note: empty subsequence $(j < i)$ is allowed and has sum zero)
What is a simple algorithm for MSS?	Divide-and-conquer for MSS
$\begin{split} MSS(A) \\ & \text{Initialize all entries of } n \times n \text{ array } B \text{ to zero} \\ & \text{for } i = 1 \text{ to } n \text{ do} \\ & \text{sum } = 0 \\ & \text{for } j = i \text{ to } n \text{ do} \\ & \text{sum } += A[j] \\ & B[i,j] = \text{sum} \\ & \text{end for} \\ & \text{end for} \\ & \text{Return maximum entry of } B[i,j] \\ \\ & \text{Running time? } O(n^2). \text{ Can we do better?} \end{split}$	 Recursive solution for MSS Idea: Find MSS L in left half of array Find MSS R in right half of array Find MSS M for sequence that crosses the midpoint Return max(L, R, M)

MSS Correctness?
 If MSS is contained in left half, then by induction we are correct If MSS is contained in right half, then by induction we are correct Otherwise MSS spans midpoint. L' = MSS on left half ending at midpoint R' = MSS on right half starting at midpoint L'+R' = MSS spanning midpoint.
More recurrences
 Problem of size n → q parts of size n/2. Combine solutions in O(n) time. Recurrence
$\begin{split} T(n) &\leq q T(n/2) + cn, \qquad T(1) \leq c. \\ \text{Qualitatively different behavior } q = 1, \ q = 2, \ \text{and} \ q > 2. \\ \bullet \ & \text{If} \ q = 1, \ T(n) = O(n). \\ \bullet \ & \text{If} \ q = 2, \ T(n) = O(n \log n). \\ \bullet \ & \text{If} \ q > 2, \ T(n) = O(n^{\log_2(q)}). \end{split}$
Proof for $q = 1$
$T(n) \leq T(n/2) + cn, \qquad T(1) \leq c.$ • Partial substitution (with guess $T(n) \leq kn^d$) $T(n) \leq T(n/2) + cn$ $\leq k(n/2)^d + cn$
$= \frac{k}{2^d}n^d + cn$ Set $d = 1$ $k = 2c$ to get $T(n) \le \frac{k}{2}n + cn = kn$

Proof for
$$q > 2$$

$$T(n) \le qT(n/2) + cn, \qquad T(1) \le c.$$
• Unravel the recurrence

$$T(n) \le qT(n/2) + cn$$

$$\le q^2T(n/4) + cqn/2 + cn$$

$$\le q^3T(n/8) + cq^2n/4 + cqn/2 + cn$$
...

$$\leq \sum_{i=0}^{\log_2 n-1} cn \left(\frac{q}{2}\right)^i$$

Summary

With recurrence

$$T(n) \le qT(n/2) + cn, \qquad T(1) \le c.$$

Always get

$$T(n) \le cn \sum_{i=0}^{\log_2(n)-1} (q/2)^i$$

• But series behaves differently for q < 2, q = 2, q > 2.

Final calculations

• Use geometric series
$$\left(\sum_{k=0}^{n-1} r^k = (r^n - 1)/(r - 1)\right)$$

$$T(n) \le cn \sum_{i=0}^{\log_2 n-1} (q/2)^i = cn \left(\frac{(q/2)^{\log_2 n} - 1}{q/2 - 1} \right)$$

$$\le \frac{c}{q/2 - 1} n(q/2)^{\log_2 n}$$

$$= \frac{c}{q/2 - 1} n n^{\log_2(q/2)}$$

$$= \frac{c}{q/2 - 1} n n^{\log_2(q) - 1}$$

$$= \frac{c}{q/2 - 1} n^{\log_2(q)} = O(n^{\log_2(q)})$$