
CMPSCI 311: Introduction to Algorithms
First Midterm Exam: Practice Exam

Name: ID:

Instructions:

• Answer the questions directly on the exam pages.

• Show all your work for each question. Providing more detail including comments and expla-
nations can help with assignment of partial credit.

• If the answer to a question is a number, unless the problem says otherwise, you may give your
answer using arithmetic operations, such as addition, multiplication, “choose” notation and
factorials (e.g., “9× 35! + 2” or “0.5× 0.3/(0.2× 0.5 + 0.9× 0.1)” is fine).

• If you need extra space, use the back of a page.

• No books, notes, calculators or other electronic devices are allowed. Any cheating will result
in a grade of 0.

• If you have questions during the exam, raise your hand.

Question Value Points Earned

1 10

2 10

3 10

4 10

5 10

Total 50

1



Question 1. (10 points) Indicate whether each of the following statements is TRUE or
FALSE. No justification required.

1.1 (2 points):
∑n

i=1 1/i2 = Θ(n4).
Solution. False,

n∑
i=1

1

i2
≤
∞∑
i=1

1

i2
= π2/6 = Θ(1)

1.2 (2 points): A graph with n vertices and n− 1 edges is either disconnected or a tree.
Solution. True. All trees on n vertices has n− 1 edges. The way to see this is to orient the edges
away from any fixed vertex r and observe that every vertex has exactly one incoming edge.

1.3 (2 points): For every n there exists a directed graph on n vertices with Ω(n2) edges that has
a topological ordering.
Solution. True. Consider ordering the vertices 1, . . . , n with edges (i, j) for all i < j. This graph
clearly has a topological ordering and has

∑n−1
i=1 i = Θ(n2) edges.

1.4 (2 points): In a connected weighted graph, the edge with maximum weight is never in the
minimum spanning tree.
Solution. False. If the graph itself is a tree, then all edges must be in the MST.

1.5 (2 points): The recurrence T (n) = 4T (n/2) +O(n) solves to T (n) = Θ(n3).
Solution. False. It’s Θ(n2) according to the formula in class. For a recurrence of the form
T (n) = kT (n/2) + O(n), we saw that if k > 2 then T (n) = O(nlog2 k). Plugging in k = 4 gives
O(n2), which is not Ω(n3).

2



Question 2. (10 points)

2.1 (5 points): Recall the scheduling problem where we have several task with lengths t(i) and
deadlines d(i) and we want to order the tasks to minimize lateness where, if task i is completed at
time f(i), then lateness is defined as L = maxi max(0, f(i)−d(i)). Prove that ordering the intervals
by their slack time, i.e., d(i)− t(i) fails to find an optimal solution.

Solution. (From K&T) Consider a two-job instance where the first job has t1 = 1 and d1 = 2,
while the second job has t2 = 10 and d2 = 10. Sorting by increasing slack would place the second
job first in the schedule, and the first job would incur a lateness of 9. (It finishes at time 11, nine
units beyond its deadline.) On the other hand, if we schedule the first job first, then it finishe on
time and the second job incurs a lateness of only 1.

2.2 (5 points): On a stable matching instance, prove that if we run the Gale-Shapley algorithm
twice, once with schools proposing and once with students proposing and we obtain the same match-
ing, then the instance has a unique stable solution.

Solution. The proof is based on the fact that when we run the algorithm with the schools
proposing, we find a stable matching that is best for the schools and worst for the students.
Specifically, if s is a student and c is a college, we say that (s, c) is a valid pairing if there is a stable
matching where s is paired with c. Then define best(c) as the highest ranked student (according to
c’s ranking) such that (s, c) is a valid pair. Similarly define worst(s) as the lowest ranked college
(according to s’s ranking) such that (s, c) is a valid pair.

The textbook proves that when we run the algorithm with the schools proposing, we always
find the matching with pairs (c,best(c)) for all colleges c. This matching turns out to be equivalent
to the matching (worst(s), s) for each student s. On the other hand, when we run the algorithm
with the students proposing, we find the matching (best(s), s) which is equivalent to (c,worst(c)).

If these two are the same, then the best(c) = worst(c) for each college, so each college can only
be paired off with a single student. Thus the matching is unique.

Refer to Facts 1.7 and 1.8 in the textbook for additional details

3



Question 3. (10 points) Alice is planning her course schedule for her time at UMass. There
are n courses she must take and each course ci can have pre-requisites Pi, which is a possibly empty
set of courses. However, the department allows students to take a course and its prerequisites in
the same semester. In other words, a course ci can be taken in semester t if for all cj ∈ Pi the
semester in which Alice takes cj is at most t.

On the other hand, Alice can take at most 3 courses in a semester.

1. Prove that if the pre-requisite graph has a cycle of length 4, then there is no way for Alice to
find a schedule satisfying all the pre-requisites.

Solution. If there is a cycle in the prerequisite graph, then all courses in the cycle must be
taken in the same semester. Suppose that S is such a cycle. If there aren’t then there must
be some subset of courses S′ ⊂ S that is taken in an earlier semester than the remaining
courses S \ S′. But since S is a cycle, at least one course in S′ has a prerequisite in S \ S′,
which is a contradiction.

Thus a cycle of length 4 cannot be scheduled.

2. Prove that if every course is involved in at most one cycle of length at most 3, then a valid
schedule must exist.

Solution. For any course c, consider the courses C involved in a cycle containing c. We
will assign these all to the same semester, but we must assign all other pre-requisites in an
earlier semester. This is always possible, since while pre-requisites can be in cycles of their
own, they cannot be in cycles containing C. In particular, it cannot be the case that there is
a cycle between some pre-requisite p, a course c′ ∈ C, and a further course r that has some
c′′ ∈ C as a pre-requisite. This implies that c′ (and c′′) are in multiple cycles.

Thus there are no reverse edges between the pre-requisites of C and the courses that require
C (e.g., edges from a course that depends on C to a course that C is dependent on), which
means that we can schedule all of the pre-requisites before C, and then proceed to schedule
everything else recursively.

4



Question 4. (10 points) Given two lists, L1 of length n and L2 of length m. We say that L2

is a subsequence of L1 if we can remove elements from L1 to produce L2. This means that there
exists indices i1 < . . . < im such that L1[ij ] = L2[j] for each j. Design an algorithm that detects if
L2 is a subsequence of L1 and outputs the indices i1, . . . , im if L2 is a subsequence of L1.

Solution. The algorithm is a greedy algorithm that makes one pass over both lists. It starts
with pointers at the first element of each list, repeatedly incrementing the pointer on L1 until it
finds an element i such that L1[i] = L2[1]. This value i is the output i1, and at this point the
algorithm increments the pointer on L2 to point to the second element, while also incrementing the
pointer on the first list, to point to the i + 1st element. The process repeats until both lists have
been traversed.

Here is the pseudocode.

j = 1, k=1
for k = 1, . . . ,m do

while L1[j] 6= L2[k] do
j ← j + 1

end while
ik = j (in the solution)
j ← j + 1, k ← k + 1

end for

This algorithm stays ahead of any other possible solution, in the sense that among all possible
subsequences, it outputs the one with lowest indices i1 < . . . < im. More formally, for any other
partial subsequence I ′ (consisting of indices i′1 < . . . < i′m, where some could be say larger than n
if elements were not matched) if we define Φ(j; I ′) to be the number of elements of L2 that have
been matched in I using the first j indices of L1, then we’ll soon prove that our algorithm satisfies
Φ(j; I) ≥ Φ(j; I ′) for all j where I is the subsequence produced by our algorithm. Assuming this
claim is true momentarily, we see that Φ(n; I) ≥ Φ(n; I ′) for all other potential partial subsequences,
which means that if L2 is a subsequence of L1, then I must be one of them.

The proof of the claim involving Φ is based on the fact that our algorithm always chooses the
first match that it finds. Since when j = 0, all subsequences have zero matches, and since we always
choose the first valid match, our algorithm always stays ahead.

The running time is clearly O(n+m). We just make one pass through both lists.

5



Question 5. (10 points) Suppose we have a complete k-ary tree with n leaves (suppose
n = kd for some integer d). Each leaf v is associated with a weight w(v). The weight of an internal
node is defined to be the sum of the weights of all leaves that are descendants of this node. So
the weight of the root r is w(r) =

∑
leaves v w(v). Design and analyze an algorithm to compute the

weight of every internal node.
Solution. This problem can be solved by a divide-and-conquer. The idea is that at each node,

we first recursively compute w on each direct child and then we simply add up the values at the
children. This is correct because we are working with a tree, which implies that the leaves are
disjoint. Therefore, we have,

w(v) =
∑

u,u child of v

w(u).

The running time of the algorithm is given by a recurrence of the form,

T (n) = kT (n/k) +O(k)

The most straightforward way to see that this recurrence is O(n) is to observe that we do a constant
amount of work for each edge in the tree. For each edge, we first make a recursive call (which will
process other edges) and then pass one number back up this edge. In total this is O(1) work per
edge.

The number of edges is at most 2n− 1. This can be found using a partial geometric series, but
it’s easier to just observe that the maximize the number of internal nodes, you want k = 2, which
gives a balanced binary tree. A balanced binary tree with n leaves has n− 1 internal nodes.

6


