Homework 4

Akshay Krishnamurthy
Due: Thursday 11/2

November 1, 2017

Instructions: Turn in your homework in class on Tuesday 11/2/2017

1. Perceptron Mistake Bound. Perceptron can also be analyzed as an online learning algorithm. In this

setting, we assume that {(z¢,1;)}7_; are a sequence of examples in R? and labels chosen adversarially. We
assume the margin-style realizability condition that there exists w* such that v = miny W, v > 0.
Further assume that max; ||z:|| < R.

The learning process proceeds in rounds, on round t the example x; is presented to the learner, who makes a
prediction ;. The learner incurs loss 1{§; # y:} and label y; is revealed. Ultimately we would like to bound
the number of mistakes

T
M = Zl{ﬁt # Yt}
t=1
(a) Prove that for perceptron, we get M < R2?/~2.

(b) There is also a multiclass generalization of perceptron. Assume there are K classes, so y; € {1,..., K},
and as usual assume max; ||z;|| < R. The parameter is a weight matrix W € RE*? and the prediction is
hw (z) = argmax;, (Wx). In this setting the perceptron algorithm can be expressed as, with wO =9

WD —w® L u® U = My =k -1 =k}), G = argmax(W ).
k

Here U®) € REX4 and Uy, is the kth row of the matrix. Ties are broken arbitrarily.
Here the new notion of margin is as follows. Assume there exists W* such that for all ¢ and all k # y;
(W>r)y, — (W),
WHle -

Prove that the number of mistakes for the multiclass perceptron is at most

e 2R?
M:Z]-{/gt?éyt}S?

t=1

2. Calibration. In this problem we’ll prove a different calibration statement for the multiclass square loss. Let
D be a distribution on X x ) where X is an abstract feature space and Y = {1,..., K}, so we are doing
multiclass classification. Let F : X x Y — [0, 1] be a set of regression functions and associate with each F a
hypothesis hy(z) = argmax, f (2,y). The multiclass square loss is

Runsq(f) = Eapon Y_(f(2 k) = L{y = k})?
k
Let f*(z,y) = P[Y = y|X = z] be the Bayes regression function, and let y*(r) = argmax, f*(x,y) be the
best label. Assume the realizability condition that f* € F. Define, for any ¢ > 0

Pe =Poop[f(z,y"(x)) £ max f*(z,y) + (]
y#y*(z)



which is in some sense the noise level in the problem. Prove that for any f € F and any ¢
2
¢

Note that this can lead to fast rates for multiclass classification when there is low noise. For example if there
is some ¢ for which P is zero, which is called the Massart noise condition, this will produce a O(d/(n()) rate,
since square loss admits O(d/n) generalization bounds, where d is the rademacher complexity or an analog of
the VC-dimension.

P(I,y)ND[hf(x) 7& y] - P(z,y)~’D[hf* (‘T) 7é y] < CPC + (Rmsq(f) - Rmsq(f*))

3. Convex Optimization. In this problem you’ll derive a convergence rate for gradient descent on a strongly
convex and smooth function. Consider the unconstrained optimization problem

minimize,cra f ()

where f is differentiable, A-strongly convex and p-smooth, which means that

F(w) > 7(@) + VI @)y~ ) + 5l — o3
) < F@) + V@) (g~ 2)+ Slly — I3,

applies for all x,y.

The following lemma about smooth and strongly convex fufnctions will be helpful. If ¢ is an a-strongly
convex, #-smooth function, then for all z,y

af
a+p

Observe that if ¢(x) is a quadratic, then o = 8 and the inequality is tight.

(Vé(z) = Voy)" (z —y) =

1
lz — ylI3 + mllvdﬁx) ~Vo(y)l3

(a) Prove that if we run gradient descent with step size n; = then

2

A
* H *

F@®) - 1 < e Ba® — o3,

where ¢ = % <1 and f* = min, f(z).
(b) Prove that this implies a bound on ||z — z*|3.

4. Hedge. Prove that the regret bound for hedge is tight. That is, prove that for any learner, there exists an
adversary, producing losses in [0, 1], such that

T
Ezft(at) - mgnz&(a) > Q(y/Tlog(K)).

You may use the fact that if Z; =>""" | €;; for j =1,...,d where {¢; ;} are iid rademacher variables, then
E ‘Hlla.Xde = Q(+/nlogd).
3=l



