Homework 4

Akshay Krishnamurthy Due: Thursday 11/2

November 1, 2017

Instructions: Turn in your homework in class on Tuesday 11/2/2017

1. **Perceptron Mistake Bound.** Perceptron can also be analyzed as an online learning algorithm. In this setting, we assume that $\{(x_t, y_t)\}_{t=1}^T$ are a sequence of examples in \mathbb{R}^d and labels chosen adversarially. We assume the margin-style realizability condition that there exists w^* such that $\gamma = \min_t \frac{\langle w^*, x_t \rangle y_t}{\|w^*\|_2}, \gamma > 0$. Further assume that $\max_t \|x_t\| \leq R$.

The learning process proceeds in rounds, on round t the example x_t is presented to the learner, who makes a prediction \hat{y}_t . The learner incurs loss $\mathbf{1}\{\hat{y}_t \neq y_t\}$ and label y_t is revealed. Ultimately we would like to bound the number of mistakes

$$M = \sum_{t=1}^{T} \mathbf{1}\{\hat{y}_t \neq y_t\}.$$

- (a) Prove that for perceptron, we get $M \le R^2/\gamma^2$.
- (b) There is also a multiclass generalization of perceptron. Assume there are K classes, so $y_t \in \{1, \ldots, K\}$, and as usual assume $\max_t ||x_t|| \leq R$. The parameter is a weight matrix $W \in \mathbb{R}^{K \times d}$ and the prediction is $h_W(x) = \operatorname{argmax}_k(Wx)_k$. In this setting the perceptron algorithm can be expressed as, with $W^{(0)} = 0$

$$W^{(t+1)} \leftarrow W^{(t)} + U^{(t)}, \qquad U_k^{(t)} = x_t \left(\mathbf{1}\{y_t = k\} - \mathbf{1}\{\hat{y}_t = k\} \right), \qquad \hat{y}_t = \operatorname*{argmax}_k (W^{(t)} x_t)_k.$$

Here $U^{(t)} \in \mathbb{R}^{K \times d}$ and U_k is the *k*th row of the matrix. Ties are broken arbitrarily. Here the new notion of margin is as follows. Assume there exists W^* such that for all *t* and all $k \neq y_t$

$$\frac{(W^{\star}x_t)_{y_t} - (W^{\star}x_t)_k}{\|W^{\star}\|_F} \ge \gamma$$

Prove that the number of mistakes for the multiclass perceptron is at most

$$M \triangleq \sum_{t=1}^{T} \mathbf{1}\{\hat{y}_t \neq y_t\} \le \frac{2R^2}{\gamma^2}$$

2. Calibration. In this problem we'll prove a different calibration statement for the multiclass square loss. Let \mathcal{D} be a distribution on $\mathcal{X} \times \mathcal{Y}$ where \mathcal{X} is an abstract feature space and $\mathcal{Y} = \{1, \ldots, K\}$, so we are doing multiclass classification. Let $\mathcal{F} : \mathcal{X} \times \mathcal{Y} \to [0, 1]$ be a set of regression functions and associate with each \mathcal{F} a hypothesis $h_f(x) = \operatorname{argmax}_y f(x, y)$. The multiclass square loss is

$$R_{\mathrm{msq}}(f) = \mathbb{E}_{(x,y)\sim\mathcal{D}} \sum_{k} (f(x,k) - \mathbf{1}\{y=k\})^2$$

Let $f^*(x,y) = \mathbb{P}[Y = y | X = x]$ be the Bayes regression function, and let $y^*(x) = \operatorname{argmax}_y f^*(x,y)$ be the best label. Assume the realizability condition that $f^* \in \mathcal{F}$. Define, for any $\zeta > 0$

$$P_{\zeta} = \mathbb{P}_{x \sim \mathcal{D}}[f^{\star}(x, y^{\star}(x)) \le \max_{y \neq y^{\star}(x)} f^{\star}(x, y) + \zeta]$$

which is in some sense the noise level in the problem. Prove that for any $f \in \mathcal{F}$ and any ζ

$$\mathbb{P}_{(x,y)\sim\mathcal{D}}[h_f(x)\neq y] - \mathbb{P}_{(x,y)\sim\mathcal{D}}[h_{f^*}(x)\neq y] \leq \zeta P_{\zeta} + \frac{2}{\zeta}(R_{\mathrm{msq}}(f) - R_{\mathrm{msq}}(f^*))$$

Note that this can lead to fast rates for multiclass classification when there is low noise. For example if there is some ζ for which P_{ζ} is zero, which is called the Massart noise condition, this will produce a $O(d/(n\zeta))$ rate, since square loss admits O(d/n) generalization bounds, where d is the rademacher complexity or an analog of the VC-dimension.

3. Convex Optimization. In this problem you'll derive a convergence rate for gradient descent on a strongly convex and smooth function. Consider the unconstrained optimization problem

minimize
$$x \in \mathbb{R}^d f(x)$$

where f is differentiable, λ -strongly convex and μ -smooth, which means that

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\lambda}{2} ||y - x||_2^2$$

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||_2^2,$$

applies for all x, y.

The following lemma about smooth and strongly convex fufnctions will be helpful. If ϕ is an α -strongly convex, β -smooth function, then for all x, y

$$(\nabla\phi(x) - \nabla\phi(y))^T (x - y) \ge \frac{\alpha\beta}{\alpha + \beta} \|x - y\|_2^2 + \frac{1}{\alpha + \beta} \|\nabla\phi(x) - \nabla\phi(y)\|_2^2$$

Observe that if $\phi(x)$ is a quadratic, then $\alpha = \beta$ and the inequality is tight.

(a) Prove that if we run gradient descent with step size $\eta_t = \frac{2}{\lambda + \mu}$, then

$$f(x^{(t)}) - f^{\star} \le c^t \frac{\mu}{2} \|x^{(0)} - x^{\star}\|_2^2$$

where $c = \frac{(\lambda - \mu)^2}{(\lambda + \mu)^2} < 1$ and $f^{\star} = \min_x f(x)$.

- (b) Prove that this implies a bound on $||x^{(t)} x^{\star}||_2^2$.
- 4. **Hedge.** Prove that the regret bound for hedge is tight. That is, prove that for any learner, there exists an adversary, producing losses in [0, 1], such that

$$\mathbb{E}\sum_{t=1}^{T} \ell_t(a_t) - \min_a \sum_t \ell_t(a) \ge \Omega(\sqrt{T\log(K)}).$$

You may use the fact that if $Z_j = \sum_{i=1}^n \epsilon_{j,i}$ for $j = 1, \ldots, d$ where $\{\epsilon_{i,j}\}$ are iid rademacher variables, then

$$\mathbb{E}\max_{j=1,\dots,d} Z_j = \Omega(\sqrt{n\log d}).$$