
Homework 4

Akshay Krishnamurthy
Due: Thursday 11/2

November 1, 2017

Instructions: Turn in your homework in class on Tuesday 11/2/2017

1. Perceptron Mistake Bound. Perceptron can also be analyzed as an online learning algorithm. In this
setting, we assume that {(xt, yt)}Tt=1 are a sequence of examples in Rd and labels chosen adversarially. We

assume the margin-style realizability condition that there exists w? such that γ = mint
〈w?,xt〉yt
‖w?‖2 , γ > 0.

Further assume that maxt ‖xt‖ ≤ R.

The learning process proceeds in rounds, on round t the example xt is presented to the learner, who makes a
prediction ŷt. The learner incurs loss 1{ŷt 6= yt} and label yt is revealed. Ultimately we would like to bound
the number of mistakes

M =

T∑
t=1

1{ŷt 6= yt}.

(a) Prove that for perceptron, we get M ≤ R2/γ2.

(b) There is also a multiclass generalization of perceptron. Assume there are K classes, so yt ∈ {1, . . . ,K},
and as usual assume maxt ‖xt‖ ≤ R. The parameter is a weight matrix W ∈ RK×d and the prediction is
hW (x) = argmaxk(Wx)k. In this setting the perceptron algorithm can be expressed as, with W (0) = 0

W (t+1) ←W (t) + U (t), U
(t)
k = xt (1{yt = k} − 1{ŷt = k}) , ŷt = argmax

k
(W (t)xt)k.

Here U (t) ∈ RK×d and Uk is the kth row of the matrix. Ties are broken arbitrarily.

Here the new notion of margin is as follows. Assume there exists W ? such that for all t and all k 6= yt

(W ?xt)yt − (W ?xt)k
‖W ?‖F

≥ γ

Prove that the number of mistakes for the multiclass perceptron is at most

M ,
T∑
t=1

1{ŷt 6= yt} ≤
2R2

γ2

2. Calibration. In this problem we’ll prove a different calibration statement for the multiclass square loss. Let
D be a distribution on X × Y where X is an abstract feature space and Y = {1, . . . ,K}, so we are doing
multiclass classification. Let F : X × Y → [0, 1] be a set of regression functions and associate with each F a
hypothesis hf (x) = argmaxy f(x, y). The multiclass square loss is

Rmsq(f) = E(x,y)∼D
∑
k

(f(x, k)− 1{y = k})2

Let f?(x, y) = P[Y = y|X = x] be the Bayes regression function, and let y?(x) = argmaxy f
?(x, y) be the

best label. Assume the realizability condition that f? ∈ F . Define, for any ζ > 0

Pζ = Px∼D[f?(x, y?(x)) ≤ max
y 6=y?(x)

f?(x, y) + ζ]
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which is in some sense the noise level in the problem. Prove that for any f ∈ F and any ζ

P(x,y)∼D[hf (x) 6= y]− P(x,y)∼D[hf?(x) 6= y] ≤ ζPζ +
2

ζ
(Rmsq(f)−Rmsq(f?))

Note that this can lead to fast rates for multiclass classification when there is low noise. For example if there
is some ζ for which Pζ is zero, which is called the Massart noise condition, this will produce a O(d/(nζ)) rate,
since square loss admits O(d/n) generalization bounds, where d is the rademacher complexity or an analog of
the VC-dimension.

3. Convex Optimization. In this problem you’ll derive a convergence rate for gradient descent on a strongly
convex and smooth function. Consider the unconstrained optimization problem

minimizex∈Rdf(x)

where f is differentiable, λ-strongly convex and µ-smooth, which means that

f(y) ≥ f(x) +∇f(x)T (y − x) +
λ

2
‖y − x‖22

f(y) ≤ f(x) +∇f(x)T (y − x) +
µ

2
‖y − x‖22,

applies for all x, y.

The following lemma about smooth and strongly convex fufnctions will be helpful. If φ is an α-strongly
convex, β-smooth function, then for all x, y

(∇φ(x)−∇φ(y))T (x− y) ≥ αβ

α+ β
‖x− y‖22 +

1

α+ β
‖∇φ(x)−∇φ(y)‖22

Observe that if φ(x) is a quadratic, then α = β and the inequality is tight.

(a) Prove that if we run gradient descent with step size ηt = 2
λ+µ , then

f(x(t))− f? ≤ ctµ
2
‖x(0) − x?‖22,

where c = (λ−µ)2
(λ+µ)2 < 1 and f? = minx f(x).

(b) Prove that this implies a bound on ‖x(t) − x?‖22.

4. Hedge. Prove that the regret bound for hedge is tight. That is, prove that for any learner, there exists an
adversary, producing losses in [0, 1], such that

E
T∑
t=1

`t(at)−min
a

∑
t

`t(a) ≥ Ω(
√
T log(K)).

You may use the fact that if Zj =
∑n
i=1 εj,i for j = 1, . . . , d where {εi,j} are iid rademacher variables, then

E max
j=1,...,d

Zj = Ω(
√
n log d).
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