
Homework 5

Akshay Krishnamurthy
Due: Thursday 11/16

November 12, 2017

Instructions: Turn in your homework in class on Thursday 11/16/2017

1. Log-barrier regularization. The Agile Mirror Descent algorithm is the following. Starting with w1, at
round t

(a) Play wt, observe loss ft, let `t = ∇ft(wt).
(b) Let w̃t+1 satisfy ∇R(w̃t+1) = ∇R(wt)− η`t
(c) set wt+1 = argminw∈S DR(w||w̃t+1)

In this problem we will analyze this algorithm. It will be helpful to use the generalized Pythagorean theorem:
Let x ∈ S, ỹ by some vector, and define y = argminz∈S DR(z||ỹ), then DR(x||ỹ) ≥ DR(x||y) + DR(y||ỹ).
(Bonus: prove the generalized pythagorean theorem)

(a) Prove a Be-The-Leader style lemma for this algorithm. For any w ∈ S and t

〈wt − w, `t〉 ≤ 〈wt − w̃t+1, `t〉+
1

η
(DR(w||wt)−DR(w||wt+1))

(b) Now, in the Experts setting (i.e. S = ∆([d])), using the log-barrier regularizer R(w) =
∑d
i=1− log(wi),

derive a closed form for w̃t+1 in terms of wt.

(c) Use the above two steps to prove the regret bound

RegT (u) ≤ η
∑
t

〈w2
t , `

2
t 〉+

1

η
(R(u)−R(w1))

Note this regularizer has some very different properties than entropic regularizer that we saw in class and it
can be quite useful in various contexts. For example, Foster et al. [4] for learning in game-theoretic settings
and Agarwal et al. [1] use it for model selection. The useful thing is that the first term is 〈w2

t , `
2
t 〉 instead of

the usual 〈wt, `2t 〉, which is important for settings with partial feedback.

2. Online Gradient Descent. In this problem we’ll study an adaptive online gradient method with a time-
varying step size. We use the learning rate ηt = B√∑t

τ=1 ‖∇fτ (wτ )‖2
2

where the (convex) loss function at round

τ is fτ and we assume that ‖w‖ ≤ B for all w we are competing with. In more detail, the update is
wt+1 = wt − ηt∇ft(wt). In this problem we will prove that for all times T , we have

Reg(T ) =

T∑
t=1

ft(wt)−min
w

T∑
t=1

ft(w) ≤ 3B

√√√√ T∑
t=1

‖∇ft(wt)‖22

(a) First analyze online gradient descent with variable learning rate ηt at round t. Follow the gradient
descent proof to show that

Reg(T ) ≤ B2

2ηT
+

T∑
t=1

ηt‖∇ft(wt)‖22

1



(b) Next, use induction to prove the analytical inequality

T∑
t=1

at∑t
i=1 ai

≤ 2

√√√√ T∑
t=1

at

(c) Put the two parts together to obtain the regret bound.

This problem is about adaptive gradient methods which are now the default optimization algorithm in most
packages. The main improvement is that we don’t use any bound on the gradients to set the learning rate,
so we can adapt to situations where the gradients are much smaller than the bound. Duchi et al. [3] analyze
several other adaptive gradient methods.

3. Stochastic Bandits with delays. In the stochastic K-arm bandit setting, suppose now that the loss for
round t is only revealed at round t+ γ for γ ∈ N. Derive a instance-dependent regret bound for a confidence
based algorithm.

Reg(T ) = Tµ? −
T∑
t=1

µ(at) ≤ O

∑
a 6=a?

log(T )

∆a
+ γ

∑
a 6=a?

∆a


where ∆a = µ(a?)− µ(a) and a? = argmaxa µ.

Handling delayed feedback arises naturally in many settings (see for example Cesa-Bianchi et al. [2] for other
bandit problems). It is reassuring to know that delays are not really a major issue in most problems.
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