
Lecture 11: Linear Classification and Support Vector Machines

Akshay Krishnamurthy
akshay@cs.umass.edu

October 12, 2017

1 Recap

Last time we talked about boosting and derived a new way to explain boosting’s generalization behavior using the
theory of margins. It turns out that margins play a fundamental role in linear prediction more generally, which we
will investigate today. To build some intuition, we showed last time that

PD[yf(x) ≤ 0] ≤ PS [yf(x) ≤ θ] +O

(√
log(|H|)
nθ2

+
log(1/δ)

n

)
(1)

for any function f ∈ conv(H). Thus a sensible strategy is to find a function that has low training error but also
has good “empirical margin distribution”, so that

PS [yf(x) ≤ θ]

is small for big θ. Adaboost does have this property:

Theorem 1. Let γt = 1/2− εt as in the usual AdaBoost. Then

PS [yF (x) ≤ θ] ≤
T∏
t=1

√
(1 + 2γt)1+θ(1− 2γt)1−θ.

This generalizes the training error bound we proved for AdaBoost, which is just with θ = 0.
Another way to achieve a good bound here is to “maximize the margin,” which means make θ as large as possible

while still having PS [yf(x) ≤ θ] = 0. This maximum-margin intuition motivates support vector machines, although
the setup is somewhat different.

2 Perceptron

Let’s start out with something simpler and not worry too much about the statistical consequences of margins.
Consider the realizable setting for binary classification where the hypothesis class is the set of linear separators.
Here X = Rd and Y = {−1,+1} and H = {x→ sign{〈w, x〉}, w ∈ Rd}. We are in the realizable case, so we have a
dataset (x1, y1), . . . , (xn, yn) and we know that there exists a linear separator that has zero training error. As such,
we can compute the ERM by setting up a linear feasibility problem

?∃w s.t. ∀i ∈ [n], yi〈w, xi〉 ≥ 0

This is a linear feasibility problem with n constraints and can hence be solved efficiently using standard techniques
(e.g., ellipsoid or simplex).

Another way to solve the same program is with the Perceptron algorithm. The algorithm is iterative and starts
with w0 = 0. Then on iteration t, if some example xi is predicted incorrectly (yi 6= sign{〈wt, xi〉}) we update

wt+1 ← wt + yixi.

If no example is predicted incorrectly then we have an ERM and we are done.

1

Claim 2. Suppose the data is linearly separable by w? and define r = maxi ‖xi‖2 and γ = mini(〈w?, xi〉yi/‖w?‖2).
Then the perceptron algorithm is guaranteed to terminate in at most r2/γ2 updates.

Proof. The basic idea here is to analyze the angle between wt+1 and w? and understand how it is shrinking at every
iteration. Specifically we will show that if the algorithm hasn’t terminated for T rounds then,

cos∠(wT , w
?) =

〈wT , w?〉
‖wT ‖‖w?‖

≥ γ
√
T

r

This proves the result since the cosine can be at most one. Let us start by deriving a lower bound on the numerator.

〈wt+1, w
?〉 = 〈wt, w?〉+ 〈yixi, w?〉 ≥ 〈wt, w?〉+ γ‖w?‖2

And hence 〈wT , w?〉 ≥ Tγ‖w?‖2. For the denominator, we know that ‖wt+1‖22 = ‖wt + yixi‖22 ≤ ‖wt‖22 + r2 since
the cross term is negative. Thus after T iterations, we have

Tγ‖w?‖2 ≤ 〈wT , w?〉 ≤ ‖wT ‖2‖w?‖2 ≤
√
Tr‖w?‖2

If T > r2/γ2 this is a contradiction, which means the algorithm must terminate.

The quantity γ is kind of a margin here and in Perceptron it controls the running time of the algorithm. To relate
this margin to the one we saw in boosting, observe that w?/‖w?‖ has unit Euclidean norm, so for a unit-normed
w, the margin here is

γ = min
i
fw(xi)yi

where fw(x) = 〈w, x〉 for pattern matching with the boosting result. The main differences are (a) we are using
Euclidean geometry instead of the `1 geometry that we used in boosting, and (b) we are getting a “worst-case”
margin, rather than something more refined about the margin distribution. Or in the boosting theorem, if we use
this value then we get that the first term is zero, but recall that the boosting theorem applies for any value of γ.

Turning to statistics, if we just solve the linear program using say Ellipsoid, we have no guarantee about the
margin of this function, so the best thing we can say is through the VC theorem.

Proposition 3. The weight vector ŵ obtained by solving the linear program satisfies with probability at least 1− δ

Px∼D[sign{〈ŵ, x〉} 6= sign{〈w?, x〉}] ≤ O
(
d log(n/δ)

n

)
.

Note that this bound is dimension-dependent, which is really bad in high dimensions. On the other hand, the
margin bound in Eq. (1) is dimension independent and can be much better when the margin is big, or when we’re
in infinite dimension (which we’ll get to soon). The hope is we can also get a margin bound here.

For Perceptron it turns out to be challenging. First, another way to express the margin is in terms of the norm
of the predictor w. Let

B = min{‖w‖2 s.t. ∀i ∈ [n], yi〈w, xi〉 ≥ 1}.

Then B = 1/γ since you will always make one constraint tight, so the numerator in the definition of γ is exactly 1.
For Perceptron, we know that by the setting of T that ‖wT+1‖ ≤ r2/γ, but unfortunately we do not know that it

satisfies the constraints here. Instead all we know is that yi〈wT+1, xi〉 ≥ 0, which is not adequate to apply Eq. (1).

3 Hard-margin SVM

However, seeing the definition of B, directly motivates the Hard-Margin SVM. Since we know that when we have
favorable margin γ, or equivalently low ‖w‖2, we have good generalization, why not try to minimize the norm
directly?

minimize‖w‖22 s.t. ∀i ∈ [n], yi〈w, xi〉 ≥ 1 (2)

This is a quadratic optimization problem that again we can solve efficiently using a number of methods.

2

Generalization. Let us turn first to statistical issues and consider the realizable case. Observe that since w?

is feasible, we know that the solution we find must have norm at most ‖w?‖. As a consequence, we immediately
ensure the same margin and we can plug this into whatever margin-based generalization bound we can prove.

In particular, we get

Theorem 4. Let D be a distribution over B2(R, d)× {−1,+1} that is linearly separable with margin γ (e.g., there
exists w? with ‖w?‖ ≤ 1/γ such that with probability 1 over the choice (x, y) ∼ D, we have y〈w?, x〉 ≥ 1). Then the
0/1 error of Hard-Margin SVM is at most √

4R2

nγ2
+

√
2 log(2/δ)

n
.

1. The result is kind of like the margin theorem for boosting. The first term is zero since we’ll use the margin
value γ, for which we know that all of the points have larger margin value (by definition). The other main
difference is that we replaced log(|H|) with R2, but this is a consequence of the Euclidean versus `1 geometry.
However, note that we are getting a dimension independent bound! You’ll prove a simpler version of this
theorem in Homework 3.

2. But note that the dimension-dependent bound has the O(1/n) convergence since we are in the realizable
setting while the margin bounds have O(

√
1/n) convergence. Two points here are (1) both bounds hold

simultaneously, for hard-margin SVM, so we get the best of both worlds, and (2) we’re not likely to be in the
realizable case anyway, so the O(1/n) bound isn’t really relevant. On the other hand, the Hard-margin SVM
bound requires realizability. We will attempt to relax this in two different ways.

3. I am not aware of a O(1/n)-margin type bound. But it very well might exist. If anyone does run across such
a thing, please do send me a pointer.

3.1 Kernel Trick

There are many deep insights about hard-margin SVM that are worth investigating. These typically follow from
convex duality and we discuss some of these here. First, by introducing Lagrange parameters λ1, . . . , λn we can
re-write the problem as

min
w

max
λ�0
‖w‖2 +

n∑
i=1

λi(1− yi〈w, xi〉)

This program is equivalent to Eq. (2), since if w is infeasible it violates some constraint, and we set that λ to infinity
and drive the objective to infinity as well. On the other hand if w is feasible, we should just set all the λs to zero.

It will be helpful to multiply the norm by 1/2, which again doesn’t change the solution. Now, we always get

min
w

max
λ�0

1

2
‖w‖2 +

n∑
i=1

λi(1− yi〈w, xi〉) ≥ max
λ�0

min
w

1

2
‖w‖2 +

n∑
i=1

λi(1− yi〈w, xi〉)

This is called weak duality. It turns out that this is actually an equality, which is known as strong duality, but we
will not discuss this too much. The main point is, that working with this dual problem, we can actually analytically
solve for w in terms of the λ by taking derivative. Specifically, fixing λ1, . . . , λn, setting the gradient with respect
to w equal to zero implies

w −
n∑
i=1

λiyixi = 0⇒ w =

n∑
i=1

λiyixi

This reveals that the optimal w for any λ is in the linear span of the feature vectors x1, . . . , xn. Then we can plug
in this solution to re-write the dual problem as

max
λ�0

1

2
‖

n∑
i=1

λiyixi‖22 +

n∑
i=1

λi(1− yi〈
n∑
j=1

λjyjxj , xi〉) = max
λ�0

n∑
i=1

λi −
1

2

n∑
i,j=1

λiλjyiyj〈xi, xj〉.

3

Now we make a few observations, first the optimization problem only involves the feature vectors in terms of
inner products 〈xi, xj〉. Second since we know that the optimal w is in the linear span of the features, and since
we are doing linear classification, making a prediction also only requires inner products. Finally, we saw from the
generalization analysis that the dimension of the space did not really matter from the statistical perspective. This
discussion implies that it doesn’t really matter from the computational perspective either, and this motivates the
so-called kernel trick.

The idea here is to replace inner product with inner product in a much higher-dimensional space via a feature
map x → Φ(x). If inner products 〈Φ(x),Φ(x′)〉 can be computed efficiently, then we can run the SVM and
make predictions. Specifically, suppose there is a feature map Φ and a kernel function K such that K(x, x′) =
〈Φ(x),Φ(x′)〉, then we can re-write the dual problem as

max
λ�0

n∑
i=1

λi −
1

2

n∑
i,j=1

λiλjyiyjK(xi, xj)

And computationally it doesn’t matter what dimension Φ maps to. Of course, for the margin analysis it doesn’t
matter what dimension Φ maps to either, it just matters that we have a good margin in the feature space induced
by Φ. Together, this means we can even map into infinite dimension, provided we can compute inner products
efficiently.

Example 1 (RBF kernel). Let K(x, y) = exp(−‖x− y‖22/2) in d dimensions with ‖x‖ = ‖y‖ = 1. Then by Taylor
expansion

K(x, y) = exp(−1)

∞∑
k=1

〈x, y〉k

k!

Observe that 〈x, y〉k is the inner product between the “tensorized” versions of x an y, which have all polynomials
with k terms. Thus the Gaussian/RBF kernel lifts the problem to infinite dimensions by expressing x in terms of
all possible polynomial terms.

The downside with the kernel trick is that you have to operate with an n×n matrix, which can be quite bad for
large sample sizes. This motivates a lot of research on matrix approximation and specifically approximating kernel
matrices.

4 Soft-margin SVM

If the training set is not linearly separable, the Hard-margin SVM can perform poorly, since there may not be any
feasible solutions. Instead, the typical approach is to introduce slack parameters, one for each variable, that relax
the constraint about classifying correctly with margin. Instead we solve

min
w,ξ

λ‖w‖22 +
1

n

n∑
i=1

ξi s.t. ∀i ∈ [n], yi〈w, xi〉 ≥ 1− ξi, ξi ≥ 0.

There are two things to keep in mind here. First, if the data is not linearly separable, then something is required to
ensure feasibility, and introducing the slack variables does it. Second, this can be beneficial even when the problem
is linearly separable, since we might be able to find a much larger margin if we don’t care too much about a few
points. For example, maybe there is just one point or a few that are hard to classify, then we can incur some slack
penalty for them and push to a much bigger margin.

This form of program also has a connection to loss minimization. Observe that for any w, the minimization over
ξ decomposes across the n samples, and the best thing to do is set ξ = 0 if y〈w, xi〉 ≥ 1 and otherwise we should
set ξ = 1− yi〈w, xi〉. This is exactly the hinge loss `(y, y′) = max(0, 1− yy′) for binary classification:

min
w
λ‖w‖22 +

1

n

n∑
i=1

max(0, 1− yi〈w, xi〉).

Thus soft-margin SVM is equivalent to solving a regularized ERM problem with the hinge loss.

Kernel trick. Soft-margin SVM can also be kernelized, as you will see on the homework.

4

	Recap
	Perceptron
	Hard-margin SVM
	Kernel Trick

	Soft-margin SVM

