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1 Recap

Last time we saw the spectral clustering algorithm, which used the eigenvectors of some matrix to identify clusters
in data. Today we’ll see another spectral method for learning latent variable models. As in spectral clustering,
these methods are based on extracting eigenvectors for certain matrices build from the data.

2 Gaussian Mixture Model

For simplicity we will focus on a simple Gaussian Mixture Model. Consider a mixture of k spherical gaussians in
Rd which is the following generative process. Let w ∈ ∆([k]) denote a distribution and let µ1, . . . , µk ∈ Rd be the
mean vectors. Each point xi is generated by first choosing a component hi ∼ w and then xi ∼ N (µhi , I). We are
given n samples x1, . . . , xn drawn according to this process.

Such models are called latent variable models since the component assignments hi are latent or unobserved. The
standard approach of maximum likelihood estimation is typically intractable in a latent variable model due to this
unobservability. Specifically, the negative log likelihood here is

L(w, µ1, . . . , µk;x1:n) =

n∑
i=1

− log

 k∑
j=1

wjN (xi;µj , I)


In general this is a non-convex optimization, in part because there is interplay between the mixture weights w and
the parameter µ. Or maybe more obviously, there are clearly many optima since if we permute the means and
the weights in the same way we get the same log-likelihood. Just to contrast if we just had one component, the
log-likelihood would be

L(µ;x1:n) =

n∑
i=1

log(N (xi;µj , I)) =

n∑
i=1

‖xi − µj‖22/2 +
d

2
log(2π)

which is clearly a convex function of µ.
Given that in the mixture model the log-likelihood is non-convex, how should we go about estimating the

parameters? Probably in 689 you saw the EM algorithm, which is an iterative method for parameter estimation
in latent variable models that is based on optimizing the log-likelihood. This method does have some theoretical
guarantees, but today we’ll discuss another approach based on the method of moments.

2.1 Method of Moments

At a high level, the method of moments amounts to solving a system of polynomial equations based on the moments
in the data. The idea is that we want to find a distribution Pθ where θ = (w, µ1, . . . , µk) such that the true moments:

∀j ∈ N,Ex∼Pθ

(
j⊗
i=1

x

)
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agree with the observed moments in the data. Here I am using ⊗ to denote outer product, which is a tensor with
j modes and d dimensions per mode. Intuitively this make sense since the parameters of the model influence the
moments.

As an example, let us calculate the moments for the Gaussian Mixture Model with parameters w, µ1, . . . , µk.

Lemma 1. For the GMM, we have

M1 , E[x] =

k∑
i=1

wiµi

M2 , E[x⊗ x]− I =

k∑
i=1

wiµi ⊗ µTi

M3 , E[x⊗ x⊗ x]−
d∑
i=1

(E[x]⊗ ei ⊗ ei + ei ⊗ E[x]⊗ ei + ei ⊗ ei ⊗ E[x]) =

k∑
i=1

wiµi ⊗ µi ⊗ µi

Proof. The first moment is obvious. For the second moment

E[x⊗ x] =

k∑
i=1

wiEz∼N (0,I)(µi + z)⊗ (µi + z) =

k∑
i=1

wi(µi ⊗ µi + I)

and the conclusion follows. Similarly for the third moment

E[x⊗ x⊗ x] =

k∑
i=1

wiEz∼N (0,I)(µi + z)⊗ (µi + z)⊗ (µi + z)

=
∑
i

wiµi ⊗ µi ⊗ µi +

k∑
i=1

∑
j

wiµi ⊗ ej ⊗ ej + ej ⊗ µi ⊗ ej + ej ⊗ ej ⊗ µi

Here we have to multiply out all the terms and whenever there is just one z in the outer product we get zero. If
there are two zs then, applying expectation they become the identity, which we rewrite as

∑
j ej ⊗ ej .

The point here is that the weights w and the means µi are hidden in the moment tensors. Of course we cannot
recover the parameters from just the first moment, since we have too many degrees of freedom. Even with the
second moment it seems tricky. While we expect the matrix to be symmetric, if the µs are not orthogonal, it’s not
clear how we can extract them from the matrix. If they were orthogonal, we could take an eigendecomposition but
even here we might lose some information due to the symmetries. Just for intuition if µ1, . . . , µk were orthogonal,
then collecting them a columns of matrix V ∈ Rd×k and with Λ a diagonal matrix with wi on the diagonal, we can
write

M2 = V ΛV T .

This is almost the eigendecomposition. One issue is that we did not ask for µs to be unit normed, so once we
do that we will lose the wi information. Similarly if µ is an eigenvector than so is −µ so we might lose the sign
information. This information should be recoverable by looking at the first moment in the orthogonal case, but
let’s turn to a much more general approach based on the third moment.

3 Tensors and decompositions

We focus only on symmetric third-order tensors. An orthogonal decomposition of a symmetric 3-tensor T ∈ Rd×d×d

is a collection of orthonormal vectors v1, . . . , vk and positive scalars λi > 0 such that

T =

k∑
i=1

λivi ⊗ vi ⊗ vi
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This first thing to observe since we have a third order tensor, we preserve sign information. We cannot flip the sign
of the vector vi without also flipping the sign of λi (which is why we require it to be positive). In general tensor
decompositions are very delicate and a lot of intuition from the matrix case breaks down. But since we are working
with orthogonal decompositions things will be much simpler.

Fixed point characterization. Like we saw last time in the matrix case, we can view a tensor T as a map
T : Rd → Rd given by

T (u) = T (I, u, u) =

d∑
i=1

∑
j,k

Ti,j,k(eTj u)(eTk u)ei

This collapses two modes of the tensor by taking tensor-vector product with u. The fixed point characterization of
a tensor eigenvector is

T (u) = λu

It is easily verified that if T has orthogonal decomposition then the vectors in the decompositions are the eigenvec-
tors. However since the map T (u) is non-linear, even with multiplicity, a linear combination of eigenvectors will in
general no longer be an eigenvector. However if λi, vi are the eigenvalue/vector pairs, then for any subset S ⊂ [k]
the vector u =

∑
i∈S vi/λi will be an eigenvector. Thus the decompositions are not necessarily unique.

These combinations are in a sense spurious and they are not the robust fixed points of the map T (I, u, u),
although they are legitimate fixed points. Instead, we say that a unit vector u is a robust eigenvector if there exists
some ε > 0 such that for all θ ∈ {u′ | ‖u′ − u‖ ≤ ε} repeated iteration of

θ̄ → T (I, θ̄, θ̄)

‖T (I, θ̄, θ̄)‖

starting from θ converges to u. If T has orthogonal decomposition, then these are precisely the robust eigenvectors.

Variational Characterization. We may also generalize the Rayleigh quotient to

T (u, u, u)

(uTu)3/2

Theorem 2. Let T have orthogonal decomposition and consider

max
u

T (u, u, u) s.t. ‖u‖ ≤ 1

The stationary points are eigenvectors of T and a stationary point is an isolated local maximizer if and only if
u = vi for some vi in the orthogonal decomposition.

The reduction. Why does looking at the third-order tensor help us in identifying the parameters in the GMM?
The idea is that after suitable transformation, we can construct a 3-tensor M̃3 that has orthogonal decomposition
whose components are closely related to the means and whose eigenvalues are essentially the weights. However, as
we have expressed M3 there is no requirement that µis are orthogonal, so we need to whiten. First let W ∈ Rd×k

be a matrix such that

WTM2W = Ik×k

In the population case we can take eigendecomposition of M2 = UDUT and write W = UD−1/2, where U ∈ Rd×k.
Now write µ̃i =

√
wiW

Tµi and observe that

WTM2W =

k∑
i=1

WT (
√
wiµi)(

√
wiµ

T
i )W =

k∑
i=1

µ̃iµ̃
T
i = I
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Since we have shown that the sum of k outer products is the identity matrix, this implies that the vectors µ̃i must
be orthonormal.

Now multiply each mode of M3 by W to define M̃3 = M3(W,W,W ) ∈ Rk×k×k as

M̃3 =

k∑
i=1

wi

3⊗
j=1

(WTµi) =

k∑
i=1

1
√
wi
µ̃i ⊗ µ̃i ⊗ µ̃i

This matrix M̃3 has orthogonal decomposition that is the µ̃is. Moreover, we have the following theorem.

Theorem 3. Under a non-degeneracy condition that µ1, . . . µk are linearly independent and wi > 0 are strictly
positive, the set of robust eigenvectors of M̃3 are exactly {µ̃1, . . . , µ̃k} and the eigenvalues are 1/

√
wi. Moreover the

true means µi can be easily recovered by (WT )†µ̃i/
√
wi.

Thus we see how in the population limit we can use the tensor decomposition to extract the means µi and the
weights wi.

4 Perturbation analysis of tensor power method

So far our discussion has focused on the population case, where we can build the moments M1,M2,M3 exactly.
What should we do when there is noise? Also while we have said that the orthogonal decomposition of M̃3 reveals
the parameters, how do we compute the orthogonal decomposition. The idea is to do a form of robust power
iteration, which is something you might have seen for computing eigenvectors in a matrix.

Let us assume we have a three-tensor T̂ that we have estimated from the data. The idea is to use the fixed
point characterization to find the robust eignevectors. Specifically, we draw θ0 uniformly from the unit sphere and
repeat the iteration

θt+1 ←
T̃ (I, θt, θt)

‖T̃ (I, θt, θt)‖

Do this with many different random initializations and pick the best one to get θ̂. Then set λ̂ = T (θ̂, θ̂, θ̂) and

deflate by updating T̃ ← T̃ − λ̂θ̂⊗3. Then repeat the whole thing with this deflated T̃ .
This algorithm has a guarantee that is similar to Davis-Kahan and Weyl’s theorem, if we write T̃ = T +E where

T has orthgonal decomposition λ1, . . . , λk and v1, . . . , vk then the algorithm finds vectors v̂i, λ̂i such that

‖vi − v̂i‖ ≤
8‖E‖
λi

, |λj − λ̂j | ≤ 5‖E‖ ‖T −
∑
j

λ̂j v̂
⊗3
j ‖ ≤ 55‖E‖.

This requires some further assumptions and setting the parameters correctly and so one, so I am not stating the
formal theorem here. The main point is, now we can analyze these spectral methods for latent variable models.
Specifically we can use matrix and tensor concentration inequalities to understand what happens when we whiten
M3. This can lead to precise sample complexity guarantees for learning mixtures of gaussians. One thing to note
here is that these methods require a robust notion of linear independence, in that they require λmin(T ) to be large.
Or rather the sample complexity will depend on λ−1min. Thus this method does not work when k � d, which could
happen in some applications. I believe there is some work on generalizing to k ≥ d, I will try to find some pointers.

Note that this approach also applies to a number of other latent variable models including HMMs, LDA, GMMs
with non-spherical covariance etc.

5 Other results on GMMs

Let me mention some other related results on GMMs.
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TCS results. Separating gaussian mixtures has received much attention from the theoretical computer science
community. I think the culmination is a paper due to Moitra and Valiant. First, in the case where k ≥ d they prove
that in general there is an exponential lower bound on the sample complexity

Theorem 4. There exists two GMMs F, F ′ of k-components both of which are well behaved (large wi, separated
components etc.) each such that TV (F, F ′) ≤ O(exp(−k/30)), but for which F is not a good estimate for F ′ (in
the sense that |wi − w′i| ≥ 1/4 or TV (N (µi,Σi),N (µ′iΣ

′
i)) ≥ 1/4).

This shows that in the high-component case (which is not considered by the spectral method above), it may
require exp(k) samples to learn a mixture of gaussians.

In the same paper by Moitra and Valiant they also give an algorithm that learns a mixture of k components
(without any other assumptions) with computational and sample complexity that are polynomial in n and 1/ε, but
could have exponential dependence on k (which by above is necessary).

EM Analysis. Here we consider maximizing the log likelihood

L(θ) =
1

n

n∑
i=1

log
∑
j

wjN (xi;µj , I)

The EM algorithm iterates by maximizing

θt+1 = argmax
θ

Q(θ|θt) =
1

n

n∑
i=1

∑
j

p(hi = j|wt, µt, xi) logwjN (xi;µj , I)

where p(hi = j|wt, µt, xi) is the fractional memberships for point i in component j using the parameters wt, µt.
For a simple mixture of two gaussians, Balakrishnan, Wainwright and Yu prove that the EM algorithm, when

initialized from a reasonable location converges with linear rate

‖µt − µ?‖2 ≤ κt‖µ0 − µ?‖2 +O(
√
d log(1/δ)/n)

under some assumptions.
The main advantage of EM is that it is more robust to model misspecification. The maximum likelihood approach

makes sense even when the data is not actually generated from a mixture model (or in general from the model that
you are using). In general, the MLE computes the parametric distribution that is closest in KL-divergence to the
observed empirical distribution. In a sense this is like moving to the agnostic learning case.

Unfortunately spectral methods can perform quite poorly under model misspecification since they rely more
heavily on the modeling assumptions (e.g., to construct the moments etc.). One lesson here is that optimization-
based methods may be more effective in practice since they make sense even when the modeling assumptions are
not satisfied.
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