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1 Recap
Last time we discussed how to prove lower bounds on the minimax risk

R, (0) = infsup Eg[® o p(T(2}),0)]
T geo

The main requirements here are that p is a metric and that ® : R, — R is a non-decreasing function with ®(0) = 0.
T is the algorithm and z7 is the training data.
Last time we saw the recipe

1. Find a 26 packing ©' = {Gj}jjvil C ©.
2. Reduce to a testing problem

R.(©) > ®(5) inf sup P, [ # j]
¥ jelm]

3. Use a testing lower bound.

We also saw how to use the Neyman-Pearson lemma to derive a lower bound when M = 2, which is the simple
versus simple hypothesis testing case. This is known as Le Cam’s method

At the end of last class, I mentioned how Le Cam’s method doesn’t work well for multi-dimensional estimation
problems. To see why, let’s revisit the gaussian mean estimation problem where p = || - || and ®(¢) = 2, but now
in higher dimension. For simplicity let us consider two hypotheses, where Hy : N (0,1;) and H; = N (2v,1;) and
we will optimize for v at the end. All of the calculations we used last time apply here

Ry > [olinf sup PolW(al) £ 0] > o] (1 - 1WKL(N(o,Id)HN(zv,Id))).
v 6e{0,1} 2 2 2

Unfortunately the KL here is 2||v||? so we get

1 1
1018 (5 - 5/allolB)

This is exactly the same optimization we had before and it leads to (1/n) lower bound. However, the upper bound
for the empirical mean is O(d/n) so something is loose!

The problem is that when we consider just two hypotheses, the estimator in the infimum in some sense knows
that we are only considering two hypotheses. So from its perspective, we are just in a one-dimensional problem. As
a result, once we reduce to two hypotheses here, we will never require the effect of multiple dimensions!



2 Multiple hypotheses and Fano’s method

The above recipe produces tight lower bounds for simple problems, typically in one dimension, but it does not
work well in higher dimension. In high dimension, we cannot reduce to a simple versus simple testing problem with
just two hypotheses. Instead we need to consider many alternatives. This requires a more information theoretic
approach. For now, let’s just assume that n is one. Nothing really changes when we see more samples.

The idea is to think about this as a channel decoding problem. The channel is © — X. The sender samples
0 € [M] from some distribution P and the channel corrupts this to z ~ Py. The reciever, seeing x wants to decode
the original message, which amounts to recovering 6. Information theory studies the decoding error rates for such
problems and the key result for us is Fano’s lemma. Before we get there we need some definitions:

Definition 1 (Entropy, conditional entropy). For a random variable Z with distribution/density p(Z), we write
H(Z)=—->,p(2)log(p(z). For two random variables Y, Z the conditional entropy is

H(Y|Z) = Zp H(Y|Z=z2)= Zp ) > plylz)log plylz)

Entropy describes the average uncertainty of a random variable. Roughly, it corresponds to how many bits from
z ~ P do you have to tell me (on average) before I can figure out z. If P is uniform on [M], then H(Z) = log(M),
since you must tell me M bits before I can figure out the sample.

In a similar way, the conditional entropy is the average uncertainty of a random variable Y after observing Z.
In other words, if you sample (Y, Z) ~ P and then show me Z, how many more bits (on average) would you need
to tell me before I know Z.

Definition 2 (KL Divergence). For two distributions p,q on the same probability space
L(pllg) = Zp )log(p Zp )log(1/4(2)) — H(p)
Lemma 3 (Fano). Consider a markov chain @ — x — T (where 0 is also a random variable) and let P, = P[T # 0].
Then for any T
h(P.) 4+ P.log(|®] — 1) > H(O|X).

Here h(-) is the bernoulli entropy h(p) = —plogp — (1 — p)log(1 — p) which is at most log(2) and H(O|X) is the
conditional entropy.

Another way to state the inequality is (with © = {6;}}1)).

. Eg~unit(@) K L(P|| Pr) + log 2 T 2o KL(Po,
f PoUnif.o~py [T g1 >1-— >1— ¥
if Po~tnit.anpy [T(2) # 0] 2 log |©| = log M

;) +log?2

Once we are here, we no longer need any information theory. There are two proofs of Fano’s inequality. One is
more intuitive and algorithmic, which I like

Proof . The idea here is that if you had a good way to reconstruct © from X then you could compress the distribution
over © substantially. Let T = g(X) be an estimator that has low probability of error. From this I will design a
compression scheme for the source ©.

1. Sample 6 ~ P, Sample X ~ P(:|0), Compute T' = g(X)
2. Check if T = 6. If so, output X, 0.

3. Otherwise, output X, 1,6.



Not counting X the entropy of the remainder of the string is at most H(p.) + pelog(|©] — 1). This follows from
the fact that the first extra bit is a bernoulli, with parameter p. according to the error probability of 7. With
probabilty 1 — p. this extra bit is all there is, and with probability p. we append 6 which has entropy at most
log(|©] — 1) (since we know that § # T'(X), we already have counted one possibility). Since this string is enough to
perfectly recover 6, it must explain all of the remaining uncertainty in 6 after seeing x. Thus

H(0|z) < H(pe) + pelog(|©] — 1)
which is the desired inequality. O
Using the re-statement of Fano’s inequality, we obtain the following theorem
Theorem 4. Let © be a parameter space and suppose there exists {6, }]Ail such that
1. p(6;,0;) > 26 for all i # j
2. KL(PP||Py™) < ay for all i # j.
Then

R,(©) > &(3) (1 - W)

log M
In other words, if log(M) > 2(ay, + log2) we obtain R, (©) > ®(5)/2.
Example 1 (Gaussian mean estimation in f5). Let 2} ~ N (v,I), v € R%. And consider

R, = inf sup EziLNN(v,I)”T(x?) - ’U”%
T yeRrd

which generalizes the 1-dimensional problem we were studying last time. We want to use Fano’s inequality to get a
sharper lower bound. Let U be a 1/2 packing of the unit ball in the {5 metric. We saw (awhile ago) that the covering
number of this set is > 2¢. Covering numbers and packings are closely related, and the packing number here is also
> 2. So we have |U| = Q(2%). Now write V = {4du | u € U} to be a scaled down version of this set. We have

[ =0[l2 = 40]ju — || = 6
so we have met the first property. As for the KL note that by the triangle inequality
o =Vl < [Joll + [V < 48(fJull + [[u'[]) < 86
since ||u|| < 1. This means that

2
KLWN()[IN () = w < 3252

which means we can set o, = 32n82. To get a good lower bound, we need

dlog(2)/2 —log2
32n

log(24) > 2(32n6% +log2) = 6 < \/
So we get an Q(d/n) lower bound!

Assouad’s method. There is one more technique that we will not cover, which can produce sharp lower bounds
in some specialized cases. Rather than reduce to a single testing problem (with two or more hypotheses), we
can reduce to several binary hypothesis testing problems, usually one for each region of the space. For example,
in non-parametric problems, we typically partition the space into many bins and ask the estimator to solve a
binary hypothesis testing problem in each bin. The idea is that if it cannot solve many of these testing problems
simultaneously, then it must have high estimation error. This method is most commonly used in nonparametric
estimation problems like density estimation, etc.



3 Modern examples

Lower bounds arise all over the place and there are still many avenues for research. Let me just mention a few

1. Bandits and partial feedback settings. In the last several years a number of papers have produced more and
more refined lower bounds for various bandit problems. These lower bounds are quite interesting and can
in some cases lead to new algorithms. For example, one lower bound in some sense prescribes a sampling
distribution, and and algorithm that tries to track this distribution has very nice properties.

2. Last time I mentioned results on statistical property testing. Proving these lower bounds is actually quite
challenging. Since the problem itself is a hypothesis testing problem with just two hypotheses, you cannot
use Fano’s method and must resort to Le Cam-type arguments. To get sharp lower bounds, you must mix
over distributions in the null and alternative, which can be quite challenging.

3. Lower bounds on iteration complexity for optimization methods. The techniques I have described here are
essentially the main ways to prove lower bounds on the number of iterations required for optimization algo-
rithms, especially for stochastic optimization methods. The paradigm is essentially the same, we can think of
the algorithm as receiving noisy gradient (say) sampled from an unknown function, and we are asking that
the algorithm estimate the optimum.

4. Lower bounds with application-specific constraints. These techniques can also be used to understand tech-
niques where data privacy, distributed computation, compressive sensing, or some other computational con-
siderations are important. The main idea is to show that under these constraints, the information about the
parameter is significantly reduce (in the KL sense). For example you can do this in a compressive sensing
setup to obtain very precise rates for covariance estimation.
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