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1 Recap

Last time we introduced the VC dimension and saw one of the fundamental results in statistical learning theory.
Recall that for a hypothesis space H : X → {0, 1}, we say that H shatters a sample C ⊂ X if the H can realize all
possible binary labelings of C. The VC dimension is the size of the largest set C that can be shattered by H.

For binary classification with 0/1 loss, if the hypothesis space has VC dimension d then we can agnostically
learn with

nH(ε, δ) ≤ O
(
d log(d/ε) + log(1/δ)

ε2

)
.

samples. It turns out that VC-dimension also yields a sample complexity bound for the realizable case, and while
we didn’t prove it, the ideas behind the No Free Lunch theorem can be turned into sample complexity lower bounds
for PAC-learning VC classes.

Theorem 1 (VC dimension lower bound). For every hypothesis class H with VCdim(H) = d < ∞ and consider
binary classification under 0/1 loss. Then the following sample complexity lower bounds apply

1. In the agnostic case: nH(ε, δ) ≥ Ω
(
d+log(1/δ)

ε2

)
2. In the realizable case: nH(ε, δ) ≥ Ω

(
d+log(1/δ)

ε

)
Looking at the definition and the proof for the upper bound, VC dimension seems intimately tied to binary

classification and 0/1 loss. A natural question is whether a similar notion exists for other learning problems and
other loss functions. Today we discuss Rademacher complexity, which is precisely such a notion.

2 Uniform Convergence with Rademacher Complexity

To introduce Rademacher complexity, it is best to review the proof of the VC theorem. Recall that we wanted to
bound the expected supremum

ES∼Dn sup
h
|R(h)− R̂(h)|,

to show uniform convergence. This quantity is called an empirical process, and the study of such quantities is known
as empirical process theory. Our strategy last time was to introduce a ghost sample and symmetrize:

ES sup
h
R(h)− R̂(h) = ES sup

h
ES′R̂′S(h)− R̂S(h)

≤ ES,S′ sup
h∈H

1

n

n∑
i=1

1{h(x′i) 6= yi} − 1{h(xi) 6= yi}

= ES,S′Eε sup
h∈H

1

n

n∑
i=1

εi(1{h(x′i) 6= yi} − 1{h(xi) 6= yi}).
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This is the same proof we used last time (last time we worked on the absolute value, but you can just do both sides
separately) and in the last line we have introduced the rademacher random variables ε1:n ∼ Unif({−1, 1}). This
last expression is almost the definition of Rademacher complexity, for H and this is an intermediary term in the
proof of the VC theorem. The last step is just to simplify slightly.

sup
h∈H

1

n

n∑
i=1

εi(1{h(x′i) 6= yi} − 1{h(xi) 6= yi})| ≤ sup
h∈H

1

n

n∑
i=1

εi1{h(x′i) 6= y′i}+ sup
h∈H

1

n

n∑
i=1

−εi1{h(xi) 6= yi}

And hence

ES sup
h
R(h)− R̂(h) ≤ 2ESEε sup

h

1

n

n∑
i=1

εi1{h(xi) 6= yi}.

Notice that here we haven’t really used the fact that the classifiers are binary, or that the loss function is the 0/1
loss. The exact same argument works for any loss function, and this reasoning leads to the definition of Rademacher
complexity.

Definition 2 (Rademacher Complexity). For a set of vectors A ⊂ Rn the rademacher complexity is defined as
R(A) = 1

nEε supa∈A
∑n
i=1 εiai.

Remark 3. The intuition is that R(A) captures how well A can fit random noise. To compute the rademacher
complexity, we generate a random sign vector and find the vector a ∈ A that has maximum inner product. Thus
we fit random sign vectors with elements in A. If we can fit them well, then R(A) is big, but also intuitively you
should expect to overfit in your learning problem.

Rademacher complexity can explain uniform convergence in a very general setting, so we introduce a more
general notation now. Let Z be an instance space, let F be a function class, and ` : F × Z → R be a loss function
(think of Z = X × Y in the usual prediction set up). Then if D is a distribution over Z, the natural empirical
process of interest is

EZn∼Dn sup
f∈F

1

n

n∑
i=1

`(f, zi)− E`(f, z).

The main theorem for Rademacher complexity relates this empirical process to the rademacher complexity of the
class ` · F · Zn, which is the set of vectors {(`(f, z1), . . . , `(f, zn))}f∈F . We denote this as R(f · F · Zn).

Lemma 4 (Symmetrization with Rademacher Complexity).

EZn∼Dn sup
f
R(f)− R̂(f) ≤ 2EZn∼DnR(` · F · Zn)

Proof. Essentially the proof is above. We reproduce the calculations briefly

EZn∼Dn sup
f
R(f)− R̂(f) ≤ EZ,Z′∼Dn sup

f

1

n

n∑
i=1

`(f, z′i)− `(f, zi)

= EZ,Z′,ε sup
f

1

n

n∑
i=1

εi(`(f, z
′
i)− `(f, zi)) ≤ 2EZnR(` · F · Zn).

Theorem 5. Assume that |`(f, z)| ≤ c for all f ∈ F , z ∈ Z. Then with probability at least 1− δ

sup
f∈F

R(f)− R̂(f) ≤ 2EZ′R(` · F · Z ′) + c
√

2 log(2/δ)/n (1)

sup
f∈F

R(f)− R̂(f) ≤ 2R(` · F · Z ′) + 4c
√

2 log(4/δ)/n (2)

Proof. The proof of the first inequality requires applying Lemma 4 and McDiarmid’s inequality. For the second, we
additionally apply McDiarmid’s inequality to the Rademacher complexity, which leads to the empirical rademacher
complexity. (Exercise: complete the proof on your own).
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Data-dependent bounds. As another remark, the bound in Eq. (2) is a data dependent bound which is quite
useful and can be much smaller in practice than the expected bound in Eq. (1), or even the worst case VC bound
we saw last time. If you have a benign problem, then the expected rademacher complexity can be much better than
the worst-case VC-dimension, and if you have a favorable sample, it can be even smaller! In this way Rademacher
complexity can lead to much tighter sample complexity bounds. Obtaining such data-dependent bounds in other
settings is an active area of research.

Implications for learning. Since we know that uniform convergence is sufficient for agnostic learnability, we
see that whenever the Rademacher complexity is well-behaved, learning is possible. Thus we need to develop a set
of tools for working with and understanding Rademacher complexities.

3 Rademacher Calculus

Rademacher complexity is a fairly easy quantity to work with and satisfies a number of useful properties that
support various operations. Here we will prove some of them

Lemma 6 (Rademacher bound for finite classes (Massart Lemma)). Let A = {a(1), . . . , a(N)} be a finite set of
vectors in Rn and define ā = 1

N

∑n
i=1 a

(i) to be the average. Then,

R(A) ≤ max
a
‖a− ā‖

√
2 log(N)

n

This lemma helps us recover uniform convergence for VC-classes, since for a VC-class on a sample Zn the number
of possible vectors is at most the growth function τn(H). In particular for 0/1 loss, the vectors A we use are the
vectors {(1{h(x1) 6= y1}, . . . ,1{h(xn) 6= yn})}h∈HC

where HC is the restriction. These vectors have norm at most√
n so this recovers the

√
log(τn(H))/n rate that we saw in the VC theorem.

As you might suspect the proof uses the same log-sum-exp method that we saw in the VC theorem proof.

Proof. Assume that ā = 0, which is without loss of generality since the rademacher complexity is translation
invariant.

nR(A) = Eε max
a∈A
〈ε, a〉 =

1

λ
E log exp max

a∈A
λ〈ε, a〉

≤ 1

λ
log E exp(max

a
λ〈ε, a〉)

≤ 1

λ
log
∑
a

n∏
i=1

E exp(λεi, ai)

≤ 1

λ
log
∑
a

n∏
i=1

exp(λ2a2i /2) =
1

λ
log |A|+ λmax

a
‖a‖22/2

Here we first use Jensen’s inequality, then replace max with sum, then apply the MGF bound for rademacher
random variables we saw previously. The final step is to optimize for λ, which by taking derivative and setting to
zero, reveals that we should set λ =

√
2 log(|A|)/maxa ‖a‖22 and proves the lemma.

Another related property that is quite useful is that Rademacher complexity of a convex hull of a point set is
the same as the rademacher complexity of the point set itself.

Lemma 7 (Rademacher bound for convex hulls). Let A ⊂ Rn and define

conv(A) , {
n∑
j=1

αja
(j) : N ∈ N, a(j) ∈ A,αj ≥ 0,

∑
j

αj = 1},

to be the set of all distributions over A. Then R(A) = R(conv(A)).

3



This lemma is extremely useful since it means that learning over distributions of hypotheses is statistically not
any harder than learning over individual hypotheses. Indeed we will see this happen later in the course when we
discuss online learning. This property is also useful in convex relaxations, which lead to computationally tractable
solutions to problems in sparse recovery.

Example 1. In sparse linear regression, we want to find a linear predictor with at most s-nonzero coordinates.
Here the loss function is the square loss `(y, y′) = (y − y′)2/2 and the function class is defined in terms of a ball
W0 = {w ∈ Rd, ‖w‖22 ≤ 1, ‖w‖0 ≤ s} as F0 = {fw(x) = 〈w, x〉, w ∈ W0}. The ERM problem here is

argmin
w

1

2n

n∑
i=1

(〈w, xi〉 − yi)2 s.t. ‖w‖22 ≤ 1, ‖w‖0 ≤ s

which unfortunately is NP-hard in the worst case. However, if we work over the `1 ballW1 = {w | ‖w‖22 = 1, ‖w‖1 =∑
i |wi| ≤

√
s} then the optimization problem is convex, but moreover you can prove that

conv(W0) ⊂ W1 ⊂ 2conv(W0),

so R(W1) ≤ 2R(W0). Thus, at least statistically, working with the `1 ball does not substantially hurt you.

Proof of Lemma 7. The key idea here is that maximizing a linear function over the convex hull always yields a
vertex, which is by definition a point in the original set A. Or more precisely, if v is a vector, then

sup
α≥0,

∑
αj=1

∑
j

αjvj = max
j
vj .

This can be seen by the fact that on the left you want to put all the mass of α onto the coordinate with largest
magnitude.

nR(conv(A)) = Eε sup
α

sup
a(1),...,a(N)

n∑
i=1

εi

N∑
j=1

αja
(j)
i = Eε sup

α

N∑
j=1

αj sup
a(j)

∑
i

εia
(j)
i = Eε sup

a

n∑
i=1

εiai = nR(A)

The final lemma helps with composing loss functions

Lemma 8 (Contraction Lemma). For each i ∈ [m] let φi : R→ R be a ρ-Lipschitz function (that is |φi(x)−φi(y)| ≤
ρ|x− y| for all x, y). For a ∈ Rn let φ(a) = (φ1(a1) . . . , φn(an)) and for a set A, let φ · A = {φ(a) | a ∈ A}. Then
R(φ ·A) ≤ ρR(A).

Proof. The key idea in the proof here is to explicitly write out the expectation for one random variable and then
use the Lipschitz property on that variable.

nR(φ ·A) = Eε sup
a

n∑
i=1

εiφi(ai)

=
1

2
Eε2:n sup

a

{
φ1(a1) +

n∑
i=2

εiφi(ai)

}
+ sup

a

{
−φ1(a1) +

n∑
i=2

εiφi(ai)

}

=
1

2
Eε2:n sup

a,a′
φ1(a1)− φ1(a′1) +

n∑
i=2

εiφi(ai) +

n∑
i=2

εiφi(a
′
i)

≤ 1

2
Eε2:n sup

a,a′
ρ|a1 − a′1|+

n∑
i=2

εiφi(ai) +

n∑
i=2

εiφi(a
′
i)

=
1

2
Eε1:n sup

a,a′
ρε1(a1 − a′1) +

n∑
i=2

εiφi(ai) +

n∑
i=2

εiφi(a
′
i)

= Eε1:n sup
a
ρε1a1 +

n∑
i=2

εiφi(ai).

The inequality uses the Lipshitz property. The absolute value can be removed since the optimization for a, a′ is
over the same set and the remainder of the expression does not change if we swap the names.
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4 Why Rademacher?

Why is Rademacher complexity a better notion than VC-dimension?

1. The answer that motivated our discussion is that we want a theory that applies to other prediction problems
and also other loss functions. Rademacher complexity can be used to derive sample complexity bounds for
regression, classification with other loss functions like hinge loss of logistic loss, and even unsupervised learning
problems.

2. Another reason we saw briefly is that we can get data-dependent bounds Eq. (2). This can help since we can
often measure the empirical Rademacher complexity, so we can know if we are overfitting or not.

3. Moreover, the Rademacher calculus we have seen means that rademacher complexity bounds can be easily
applied to a number of problems.

Excess risk bounds for linear regresssion. Consider linear regression with the square loss `(x, y) = 1/2(x−y)2.
So W2 = {w ∈ Rd | ‖w‖2 ≤ 1} and Fw = {fw(x) = 〈w, x〉, w ∈ W2}. Let Z = B2(1)× [−1, 1] be the example space.
Then

R(` ◦ F ◦ Zn) ≤ 2/
√
n.

The calculation is as follows:

nR(` ◦ F ◦ Zn) ≤ 2nR(F ◦ Zn) = 2Eε sup
w

n∑
i=1

εi〈w, xi〉 = 2Eε sup
w
〈w,

n∑
i=1

εixi〉 = 2Eε‖
∑
i

εixi‖

≤ 2

(
E‖
∑
i

εixi‖22

)1/2

= 2

∑
i,j

〈xi, xj〉Eεiεj

1/2

≤ 2
√
n.

In the first step, we use that `y is 2-Lipschitz, since we can write (f(x)− y)2 − (g(x)− y)2 ≤ (f(x)− g(x))(f(x) +
g(x)− 2y) ≤ 4|f(x)− g(x)| owing to the boundedness properties. The square root arises through an application of
Jensen’s inequality.

Thus we managed to prove an excess risk bound for linear regression, which is what we introduced in the first
lecture. However, note that there we promised an O(d/n) sample complexity bound, while here we are showing
a O(1/

√
n) bound. There are two main differences. First this bound applies in an agnostic setting, so the linear

model need not be true, and this leads to a O(1/
√
n) rate instead of the better O(1/n) rate. Second, this bound

operates over a function class with bounded `2 norm, rather than the unconstrained class we used in Lecture 1.
This is closer to ridge regression, and can have substantial impact on the sample complexity.
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