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1 Recap

We have been discussing different ways to prove uniform convergence, which we earlier saw was important for
obtaining excess risk or sample complexity bounds. Today we will see our last and most powerful technique. Recall
the definitions of VC-dimension and Rademacher complexity. VCdim(#) is the size of the largest point set that
can be shattered by H and R(A) = E, sup,c4 (0, a) for vectors A C R™. The two results we saw before were
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Both bounds here are statements about uniform convergence, which we saw can be directly translated to sample
complexity bounds by application of McDiarmid’s inequality.

Today we will study another way to analyze the Rademacher complexity purely in geometric terms, which can
be much easier to think about conceptually and work with analytically. This leads to covering number bounds and
a powerful uniform convergence statement, called Dudley’s entropy integral.

2 Covering Number bounds

Let A C R™ be a set of vectors. We want to obtain bounds on R(A). If A is finite, then we already know what to
do, since we can “apply union bound,” which we did last time in the Massart Lemma

Lemma 1 (Massart Lemma). If A = {ai,...,an} is a finite set with a = + Y, a;, then R(A) < max,|ja —

allv/21log N /n.

If A is not finite, then a natural idea is to try to discretize the set. This is precisely the idea with covering
numbers. The basic idea is to find a finite subset A C A such that for every a € A, there is some @ € A that is
quite close to a. Then we apply Massart Lemma on A and pay a little bit extra depending on |la — al|.

To state things precisely we need some definitions.

Definition 2 (Metric space). A metric space (S, p) consists of a set of objects S, and a function p : Sx .S = Ry with
the following properties: (1) Identifiability p(z,y) =0 < x =y, (2) Symmetry p(z,y) = p(y, ), (3) Sub-additivity
p(@,y) < p(x,2) + p(z,y).

Example: R? with the Euclidean distance p(x,y) = Z?:I(xi —y;)? is a metric. This is the only one we will
use in this lecture, but covering number bounds apply much more generally.

Definition 3 (Covering number). Let (S, p) be a metric space, and let T C S. We say that T' C S is an a-cover
for T if, for all x € T, there exists y € T’ such that p(x,y) < a. The a-covering number of (T,p), denoted
N(a,T,p) is the size of the smallest a-covering. The metric entropy is the log covering number.

We will see some examples shortly, but let us first derive a simple bound on the rademacher complexity in terms
of the metric entropy.



Proposition 4. For A C R",
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Proof. Fix a > 0 and let A be an /na-cover of A in ly of size |A| = N'(y/na, A, £3). Note that one is guaranteed
to exist by the definition of A/. For element a, let @ be the covering element, Then,

1 1, 1 ~
R(A) =Essup —(0,a) = E;sup —(0,a) + —(0,a — a)
n

a N a N

foz Aﬁg))

1 N 1 N - 2log(
£, sup (0. + ollalle il < ROA) + o < max afl, Y21

This argument applies for any «, so the result follows by taking the minimal «. O

Note that a similar bound can also be proved using N (na, A, ¢1) by applying Holder’s inequality instead of
Cauchy-Schwarz in the proof.

Proposition 5.
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Remark 6. Often the covering numbers are expressed in a slightly different way, where the o metric is instead

defined as Uz, (x,y) = \/1/n> i (x; — y;)2. In this case the bound depends on log(N (a, A, fl2.,,)).

2.1 Examples

Linear functions. Let A C R", with ¢ = max, ||a||2 and assume that A lies in a d dimensional subspace of R™.
After use contraction to eliminate the loss, this is precisely the setting of linear regression from last time, since
A={((w,z1),...,{(w, ) }wew,, Wwhere W, is the unit Euclidean ball. So if X € R"*? then A is contained in the
column space of X which has dimension at most d.

We show that N (a, 4, f3) < (2¢v/d/a)?. To see why, let v1,...,vq be an orthonormal basis for span(A), which

means we can write any vector a € A as Z?Zl ajv; where ||afloo < |lafl2 < |lall2 < ¢. Now consider the set
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For any a, we can find a by rounding the coefficients «; for a such that
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which means that A is an a-cover. The number of elements is (2¢v/d/a)%.
Without instantiating ¢, this gives us the bound

R(4) < int c\/2dlog cxf/(foz)) e
Now if ¢ = O(y/n), which is what we expect if a € [~1,1]" then we set a = y/d/n and get O(y/dlog(n)/n).

For linear regression it seems plausible that actually ¢ = \/TM in benign cases. If the distribution is somewhat
spherical, then we would expect | X|l2 < O(y/n/d). To see why, think about if z; ~ Unif({e;}?_;) then since
X € R4 || X|| = v/ Amax(X XT) which is a d x d diagonal matrix and we expect each diagonal to be roughly n/d.
Making this more precise would lead to an O(y/log(n)/n) bound. This is closer to what we saw in last lecture when
we worked with the Rademacher complexity directly, but really covering numbers are most useful for nonparametric
classes.




Remark 7. There is actually a better proof that gives a (2¢/a + 1)¢ = O((c/a)?) bound for covering of the d-
dimensional ball of radius ¢, in the same norm. The proof is more volumetric but the bound is better in that there
is no V/d dependence. The proof idea is based on introducing a packing, which is a set of points such that no two
points are within o of each other. It is not too hard to see that covering number is at most the size of the mazximal
packing, since if you cannot pack another point in at distance «, then all points must be covered at scale . Then
take the mazimal « packing for the ball {x1,...,xp} and observe that the balls B(x;, a/2) are disjoint and if you
take |J B(xz;,t/2) then this set is contained in B(0,c 4+ «/2). Using that the radius and volume are related by
exponentiating by d you’ll get the result.

All functions. A special case of the above is, if A = [—1,1]" is the set of all vectors then the covering number
is M(a, A,03) ~ (n/a)™. Then since in applying Massart’s lemma max, |a| = y/n, we obtain a vacuous bound
R(A) < O(1), which is not very useful.

Monotonic functions. Let A C [—1,1]" be the monotonic vectors so that a; < a;y1.... We prove that
N(Vna, A, ly) = O(n?/®) which means that N(a, A,4y) = O(nY™ ). To see the first point, discretize [—1,1]
to 2/« levels of size a. The cover will be formed by choosing for each level, an index i € [n] at which the vector
increases above that level. Clearly then this cover has size at most n?/®, but moreover, for each a € A, we know
that there is a cover element that is at every point at most o away from this function, so the ¢35 norm is at most
V/na. As before max, ||al|2 = v/n so our discretization bound is
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3 Chaining bounds

In the proof, we chose a scale a to minimize the discretization error and the finite-class rademacher complexity.
While this can work well at times, it can often be better to, in some sense choose all scales simultaneously, or look
at increasing refinements of the metric space.

Theorem 8.
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Remark 9. It is probably more common to see this stated using the {3, metric, in which case you would have a
1/4/n dependence. However this translation is accounted for here since at some point N'(a, A, f3) = 1 in which case
the integrand is zero. This depends on B = max, ||a||2 which is \/n larger in the {2 metric than in the o, metric.

Proof. Let B = max, ||al|2. We will pick the scales ag = B,...q; = 27'B, and we let T; be an «; cover of A in /5.
Fixing a, let (V) be the covering element for a at scale i, so that ||a —a® ||y < a; and without let Ty = {0} = {a(9}.
Since for every a and any N we may write
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we can use this representation in the Rademacher average definition
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For the first term, we will simply use that (o,a — &™) < ||o|/|la — a®™)| < /nay. For the second term we’ll
do something similar, but we can see that ||a(3) — a(3_1)|| < o; + oj_1 < 3ay, since a1 = 2¢;. Thus applying
Massart’s lemma to these latter terms, we get
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Some versions of the bound are stated this way and this seems fine. To obtain the integral, we look at y/n times
the right hand side and use the fact that a; = 2(a; — vj41).
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Now push N — oo so that ay — 0. O

Linear class. With ¢ = \/n we know that N(a, A, {3) < (2¢/n/a)? and if o > \/n we know that the covering
number is 1, so the log covering number is 0 and we can update the limits of integration to get

127;/& /Oﬁ \/1og(2v/n/a)da

By applying a change of variables oo = 2y/n exp(—y?) this terms looks like the variance of a gaussian.

Vn oo
/0 \/1og(2v/n/a)da < /0 4yv/ny? exp(—y?)dy = 4+/2n /7.

So the entire bound is O(y/d/n), which removed the log(n) factor from the discretization bound.

Monotonic class. For monotonic functions, we saw that N(a, A, f3) < n2v7/® and as before we only have to
integrate up to y/n. Applying the theorem gives
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which is much faster than the n rate that we saw before.

4 Recap

That’s it for empirical process theory. To summarize:

1. We saw many ways to establish uniform convergence, including in terms of VC-dimension, Rademacher com-
plexity, and Covering number bounds.

2. We also saw many useful proof strategies, including symmetrization, discretization, the log-sum-exp method,
chernoff method and several others.

3. Lastly we saw how to apply this technology to obtain excess risk or sample complexity bounds for a number
of learning problems.

4. T should also point out that there are many other ways to prove that a learning algorithm will generalize
well, beyond uniform convergence. For example, if a learning algorithm is stable to small perturbations of the
training data, it cannot overfit too much so it will generalize. There are also more advanced empirical process
notions like localization that are beyond the scope of this course.

We could dedicate an entire course to empirical process theory, but now we are going to move on to some learning
algorithms. Next time, we’ll see how to use some of this technology in regression and classification settings.
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