
Graphene: A New Protocol for Block
Propagation Using Set Reconciliation

A. Pinar Ozisik†, Gavin Andresen, George Bissias†, Amir Houmansadr†, Brian Levine†

†College of Information and Computer Sciences, Univ. of Massachusetts Amherst

Abstract. We devise a novel method of interactive set reconciliation
for efficient block distribution. Our approach, called Graphene, couples a
Bloom filter with an IBLT. We evaluate performance analytically and show
that Graphene blocks are always smaller. For example, while a 17.5 KB
Xtreme Thinblock can be encoded in 10 KB with Compact Blocks, the
same information can be encoded in 2.6 KB with Graphene. We show
in simulation that Graphene reduces traffic overhead by reducing block
overhead.

1 Introduction

Blockchain-based currencies [8], such as Bitcoin and Ethereum, have seen widespread
adoption despite several limitations not present in traditional financial systems,
such as credit cards or cash. Network delays and overhead are noticeable in
blockchains. Once discovered, the propagation delay and network cost for dis-
tributing new blocks is dependent on their size, and reducing either delay or
traffic is desirable.

We contribute an extremely efficient method of announcing new blocks called
Graphene. Our protocol is applicable to a variety of blockchain-based network
protocols, such as Bitcoin, Ethereum [5], Litecoin (https://litecoin.org), and
Zerocash [10]. Our blocks are a fraction of the size of related methods, such as
Compact Blocks [3] and Xtreme Thinblocks [11]. For example, while a 17.5 KB
Xtreme Thinblock can be encoded in 10 KB with Compact Blocks, the same
information can be encoded in 2.6 KB with Graphene. We use a novel interactive
combination of Bloom filters [2] and IBLTs [6], providing an efficient solution to
the problem of set reconciliation in the p2p network. We evaluate performance
analytically and empirically via a detailed network simulation. Graphene reduces
traffic overhead to about 60% compared to using Compact Blocks if blocks are
sent every 2.5 minutes; Ethereum would see higher gains from Graphene, and the
gains for Bitcoin would be lower, since blocks are sent more and less frequently,
respectively.

2 Background

In this section, we review the operation of IBLTs and summarize related work.

Non-first authors are listed alphabetically. Supported in part by an equipment grant from the
Collaborative R&D Fund managed by the Massachusetts Technology Collaborative.

https://litecoin.org

Overview of IBLTs. We make use of Invertible Bloom Lookup Tables (IBLTs) [6],
which is an efficient data structure for set reconciliation between two peers. Like
Bloom filters [2], IBLTs allow two parties to determine, with high probability,
which values from a set they share in common. But unlike Bloom filters, IBLTs
enable the recovery of any missing values, which are assumed to be of fixed size
and encoded as binary strings. Key-value pairs can be inserted, retrieved and
deleted like an ordinary hash table. An IBLT consists of m entries, each storing
a count, a keySum, and a valueSum, all initialized to zero.

A new value v is inserted into location i = h(v) based on the hash of its value
such that i < m. At entry i, all three fields are incremented or xored. IBLTs use
k > 1 hash functions to store each value in k entries, which we collectively call
a value’s entry set. If table space is sufficient, then with high probability for at
least one of the k entries, count ≡ 1.

Suppose that two peers each have a list of values, V and V ′, respectively, such
that the difference is expected to be small. The first peer constructs an IBLT
L (with m entries) from V . The second peer constructs V ′ from L′ (also having
m entries). Eppstein et al. [4] showed that a cell-by-cell difference operator can
be used to efficiently compute the symmetric difference L4 L′. For each pair
of fields (f, f ′), at each entry in L and L′, we compute either f ⊕ f ′ or f − f ′
depending on the field type. When |count| ≡ 1 at any entry, the corresponding
value can be recovered. Peers proceed by removing the recoverable key-value pair
from all entries in the value’s entry set. This process will generally produce new
recoverable entries, and continues until nothing is recoverable.

Related Work. The main limitation we are addressing with Graphene is the
inefficiency of blockchain systems in disseminating block data. A block announce-
ment must be validated using the transaction content comprising the block.
However, it is likely that the majority of the peers have already received these
transactions, and they only need to discern them from those in their mempool.
In principle, a block announcement needs to include only the IDs of those trans-
actions, and accordingly, Corallo’s Compact Block design [3] — which has been
recently deployed — significantly reduces block size by including a transaction
ID list at the cost of increasing coordination to 3 roundtrip times. We further
detail Compact Block’s operation in Section 3 and compare it quantitatively in
Section 4. Xtreme Thinblocks [11], an alternative protocol, works similarly to
Compact Blocks but has greater data overhead. Specifically, if an inv is sent for
a block that is not in the receiver’s mempool, the receiver sends a Bloom filter
of her IDpool along with the request for the missing block. As a result, Xtreme
Thinblocks are larger than Compact Blocks but require just 2 roundtrip times.
Relatedly, the community has discussed in forums the use of IBLTs (alone) for
reducing block announcements [1,9], but these schemes have not been formally
evaluated and are less efficient than our approach. Our novel method, which we
prove and demonstrate is smaller than all of these recent works, requires just 2
roundtrip times for coordination.

2

3 Graphene: Efficient Block Announcements

In this section, we detail Graphene, where a receiver learns the set of specific
transaction IDs that are contained in a (pending or confirmed) block containing
n transactions. Unlike other approaches, Graphene never sends an explicit list of
transaction IDs, instead it sends a small Bloom filter and a very small IBLT.

PROTOCOL 1: Graphene

1: Sender: Sends inv for a block.
2: Receiver: Requests unknown block; includes count of txns in her IDpool, m.
3: Sender: Sends Bloom filter S and IBLT I (each created from the set of n

txn IDs in the block) and essential Bitcoin header fields. The FPR of the filter is
f = a

m−n
, where a = n/(cτ).

4: Receiver: Creates IBLT I′ from the txn IDs that pass through S. She decodes
the subtraction [4] of the two blocks, I 4 I′.

The protocol. The intuition behind Graphene is as follows. The sender creates
an IBLT I from the set of transaction (txn) IDs in the block. To help the
receiver create the same IBLT (or similar), he also creates a Bloom filter S of
the transaction IDs in the block. The receiver uses S to filter out transaction
IDs from her pool of received transaction IDs (which we call the IDpool) and
creates her own IBLT I ′. She then attempts to use I ′ to decode I, which, if
successful, will yield the transaction IDs comprising the block. The number of
transactions that falsely appear to be in S, and therefore are wrongly added to
I ′, is determined by a parameter controlled by the sender. Using this parameter,
he can create I such that it will decode with very high probability.

A Bloom filter is an array of x bits representing y items. Initially, the x bits
are cleared. Whenever an item is added to the filter, k bits, selected using k hash
functions, in the bit-array are set. The number of bits required by the filter is

x = y− ln(f)
ln2(2)

, where f is the intended false positive rate (FPR). For Graphene,

we set f = a
m−n , where a is the expected difference between I and I ′. Since

the Bloom filter contains n entries, and we need to convert to bytes, its size is
− ln(a

m−n)

ln2(2)
1
8 . It is also the case that a is the primary parameter of the IBLT size.

IBLT I can be decoded by IBLT I ′ with very high probability if the number of
cells in I is d-times the expected symmetric difference between the list of entries
in I and the list of entries in I ′. In our case, the expected difference is a, and we
set d = 1.5 (see Eppstein et al. [4], which explores settings of d). Each cell in an
IBLT has a count, a hash value, and a stored value. (It can also have a key, but
we have no need for a key). For us, the count field is 2 bytes, the hash value is 4
bytes, and the value is the last 5 bytes of the transaction ID (which is sufficient
to prevent collisions). In sum, the size of the IBLT with a symmetric difference
of a entries is 1.5(2 + 4 + 5)a = 16.5a bytes. Thus the total cost in bytes, T , for

the Bloom filter and IBLT are given by T (a) = n− ln(f)
c + aτ = n

− ln(a
m−µ)

c + aτ ,

where all Bloom filter constants are grouped together as c = 8 ln2(2), and we let
the overhead on IBLT entries be the constant τ = 16.5.

3

To set the Bloom filter as small as possible, we must ensure that the FPR of
the filter is as high as permitted. If we assume that all inv messages are sent
ahead of a block, we know that the receiver already has all of the transactions in
the block in her IDpool (they need not be in her mempool). Thus, µ = n; i.e., we
allow for a of m− n transactions to become false positives, since all transactions
in the block are already guaranteed to pass through the filter. It follows that

T (a) = n
− ln(a

m−n)

c
+ aτ. (1)

Taking the derivative w.r.t. a, Eq. 1 is minimized1 when when a = n/(cτ).
Due to the randomized nature of an IBLT, there is a non-zero chance that it

will fail to decode. In that case, the sender resends the IBLT with double the
number of cells (which is still very small). In our simulations, presented in the
next section, this doubling was sufficient for the incredibly few IBLTs that failed.

PROTOCOL 2: CompactBlocks

1: Sender: Sends inv for a block that has n txns.
2: Receiver: If block is not in mempool, requests compact block.
3: Sender: Sends the block header information, all txn IDs in the block and any full

txns he predicts the sender hasn’t received yet.
4: Receiver: Recreates the block and requests missing txns if there exist any.

Comparison to Compact Blocks. Compact Blocks [3] is to our knowledge the
best-performing related work. It has several modes of operation. We examined the
Low Bandwidth Relaying mode due to its bandwidth efficiency, which operates as
follows. After fully validating a new block, the sender sends an inv, for which the
receiver sends a getdata message if she doesn’t have the block. The sender then
sends a compact block that contains block header information, all transaction
IDs (shortened to 5 bytes) in the block, and any transactions that he predicts
the receiver does not have (e.g., the coinbase). If the receiver still has missing
transactions, she requests them via an inv message. Protocol 2 outlines this
mode of Compact Blocks. The main difference between Graphene and Compact
Blocks is that instead of sending a Bloom filter and an IBLT, the sender sends
block header information and all shortened transaction IDs to the receiver.

A detailed example of how to calculate the size of each scheme is below; but
we can state more generally the following result. For a block of n transactions,
Compact Blocks costs 5n bytes. For both protocols, the receiver needs the inv

messages for the set of transactions in the block before the sender can send it.
Therefore, we expect the size of the IDpool of the receiver, m, to be constrained

1
Actual implementations of Bloom filters and IBLTs involve several (non-continuous) ceiling

functions such that we can re-write:

T (a) =

(
dln(

m− n
a

)e
⌈

n ln(m−n
a)

dln(m−n
a)e ln2(2)

⌉)
1

8
+ daeτ. (2)

The optimal value of Eq. 2 can be found with a simple brute force loop. We compared the value
of a picked by using a = n/(cτ) to the cost for that a from Eq. 2, for valid combinations of
50 ≤ n ≤ 2000 and 50 ≤ m ≤ 10000. We found that it is always within 37% of the cost of the
optimal value from Eq. 2, with a median difference of 16%. In practice, a for-loop brute-force
search for the lowest value of a is almost no cost to perform, and we do so in our simulations.

4

such that m ≥ n. Assuming that m > 0 and n > 0, the following inequality must
hold for Graphene to outperform Compact Blocks:

n
− ln(a

m−n)

c
+ aτ < 5n (3)

n > m/1287670 (4)

In other words, Graphene is strictly more efficient than Compact Blocks unless
the set of unconfirmed transactions held by peers is 1,287,670 times larger than
the block size (e.g., over 22 billion unconfirmed transactions for the current
block size.) Finally, we note that Xtreme Thinblocks [11] are strictly larger than
Compact Blocks since they contain all IDs and a Bloom filter, and therefore
Graphene performs strictly better than Xtreme Thinblocks as well. In Section 4,
we provide specific empirical results from network simulation, where we use real
IBLTs and Bloom filters to evaluate Graphene and Compact Blocks.

Example. A receiver with an IDpool of m = 4000 transactions makes a request
for a new block that has n = 2000 transactions. The value of a that minimizes
the cost is a = n/(cτ) = 31.5. The sender creates a Bloom filter S with f =
a

m−n = 31.5/2000 = 0.01577, with total size of 2000× −ln(0.01577)
c = 2.1 KB. The

sender also creates an IBLT with a cells, totaling 16.5a = 521B. In sum, a total
of 2160B + 521B = 2.6 KB bytes are sent. The receiver creates an IBLT of the
same size, and using the technique introduced in Eppstein et al. [4], the receiver
subtracts one IBLT from the other before decoding. In comparison, for a block
of n transactions, Compact Blocks costs 2000× 5B = 10 KB, over 3 times the
cost of Graphene.

Ordered blocks. Graphene does not specify an order for transactions in the
blocks, and instead assumes that transactions are sorted by ID. Bitcoin requires
transactions depending on another transaction in the same block to appear
later, but a canonical ordering is easy to specify. If a miner would like to order
transactions with some proprietary method (e.g., [7]), that ordering would be
sent alongside the IBLT. For a block of n items, in the worst case, the list will
be n log2(n) bits long. Even with this extra data, our approach is much more
efficient than Compact Blocks. In terms of the example above, if Graphene was
to impose an ordering, the additional cost for n = 2000 transactions would be
n log2(n) bits = 2000 × log2(2000) bits = 2.74 KB. This increases the cost of
Graphene to 5.34 KB, still almost half of Compact Blocks.

4 Evaluation

Our evaluation addresses the following question: What is the reduction in traffic
from using Graphene for block announcements compared to Compact Blocks?

Simulator assumptions. Our evaluations are based on a detailed, custom
blockchain simulator using a Python-based discrete event simulator package. Our
simulation models the propagation of messages across network links (ignoring
effects from variable network bandwidth, TCP, etc.). Nodes accurately model
any part of typical blockchain operation necessary for evaluating our metrics,

5

●
●

●
● ●

●

●

●
●

●

●
●

●

● ●

●
●

●
●

●
●

●

●

●

●

● ●
● ●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●

● ●

● ●
●

● ●

●
●

●

●

●●

●

● ●
●

●

●
●

● ● ● ●
●

●
●

●●

●
●

●● ● ●

●

●

● ● ●

●

●
●

●

●

●

●
●

●

●
●

●● ● ●

●

●

●

●
●

●

●
● ●

●
● ●

●

●

●
● ●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
● ● ●

●

● ●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

● ●

●
● ●

●
●●

●

●
●

●

●
●

●
●

●

●
●

● ●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

● ●

●

●

● ●

●

●

● ●

●
●

● ● ●

● ●

●
●

●

●
●

●●
●

●

●

● ●
●

●

●

● ●
●

● ●
● ●

● ●
●

●
● ● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

●
●

0%

20%

40%

60%

80%

100%

50 100 150 200

Full Nodes

R
at

io

Ratio of Graphene to Compact (kb/txn)

● ● ●●
●

● ●
● ● ● ●●

●

● ●● ● ● ●● ● ●
●

● ● ● ●● ● ●
●● ● ● ●

● ●
● ●

● ● ●
●● ● ●
●

● ●
● ●● ● ●

●● ●
●

●●
●

● ●●
●

● ●● ● ● ●
● ● ● ●
●

● ●
●● ● ●
●● ● ● ●

●
● ● ●

● ●
● ●

●
● ●

●● ● ●
●

●
● ● ●

●
● ● ●

● ● ● ●
●

● ● ●●
● ● ●● ● ●

●
●

● ●
●

●

●
● ●● ● ● ●● ● ● ●

●
● ● ●● ●

●
●

●
●

● ●
●

● ●
●

● ● ● ●
●

●
● ●● ●
●

●● ●
●

●●
● ● ●● ● ●

●●
●

● ●● ● ●
●●

● ● ●
●

●
●

●● ● ● ●●
● ●

●●
● ●

●
●

● ● ●●
● ● ●● ●

● ●
● ● ● ●● ● ● ●
● ●

● ●●
● ● ●● ● ● ●● ●

● ●
● ● ●

●● ●
●

●
● ● ●

●

●

●
● ●

●

● ● ●

● ●

●

0%

20%

40%

60%

80%

100%

50 100 150 200

Full Nodes

R
at

io

Ratio of Graphene to Compact (kb/txn)

Fig. 1: When the current topology is used, Graphene reduces traffic to 60% of the cost of
Compact Blocks (or to 10% for total traffic, which includes transaction data).

T
X

N
 data not included

1 2 3 4 5 6
0

50

100

150

TXNs/second

B
yt

es
/T

X
N

 p
er

 n
od

e

Compact Blocks Graphene

Fig. 2: Traffic sent by Graphene and
Compact Blocks, where each trial’s
transaction rate is the independent
variable. Transparency reveals some
over-plotting in this scatterplot.

including maintaining a mempool, the blockchain and its forks, and using realistic
signaling.

For Graphene and Compact Blocks, our simulator creates and decodes real
Bloom filters and IBLTs, rather than merely estimating whether they might
decode or return any false positives. If these data structures fail due to random
chance, the nodes recover within the simulation. Because our simulation models
detailed signaling and is written in a high-level language, our evaluations are
based on a modest number of peers. Since our goal is a comparison between two
choices, we expect that our results are representative of larger-scale scenarios.

A challenging parameter to set is the number of transactions per second offered
to the network by peers. Our approach is to create kernel density estimates (KDEs)
from the transaction generation patterns of real world peers. To that end, we
gathered data for all Bitcoin transactions during a three-month period from
http://blockchain.info. Each transaction in the dataset is labeled with an IP
associated with the peer believed to have generated it, as well as the time it was
released to the network. For each peer, we normalized the release times by the
time of the day in which they were released. We then constructed the KDE for
each peer using these normalized transactions times and gaussian kernels with one

6

http://blockchain.info

seed: 893 seed: 972

Compact
Satoshi

Graphene
Satoshi

Compact
Satoshi

Graphene
Satoshi

0

1,000

2,000

3,000

K
B

/n
od

e

INV
GetData
Txn list

Graphene BF+IBLT
IBLT recovery
IBLT re−req.

Fig. 3: A comparison of traffic, by message
type, for two specific seeds for Graphene
and Compact Blocks. N.b., traffic does not
include transaction data.

seed: 893 seed: 972

Compact
Satoshi

Graphene
Satoshi

Compact
Satoshi

Graphene
Satoshi

0

5,000

10,000

15,000

20,000

K
B

/n
od

e

txn_data
INV
GetData

Txn list
Graphene BF+IBLT
IBLT recovery

IBLT re−req.

Fig. 4: Traffic by message type, for two spe-
cific seeds. Figure 3 shows the same plot
without transaction data included.

hour bandwidth. The KDE for a given peer represents a probability distribution
from which we can draw transactions over the course of a simulated day. For
each peer in the simulator, we randomly select one of the KDEs corresponding
to a real world peer. Because these distributions have been generated from real
data, they are a good approximation of the activity of real peers over the average
one-day interval. On the other hand, this approach is not able to model days of
the week or seasonal phenomena in transaction creation times.

Results. Each simulation is configured to use the following parameters: (i)
Topology: a high-degree p2p graph topology. (ii) Block Protocol: Compact Blocks;
or our Graphene protocol. (iii) Block capacity: 2,000 transactions. (iv) Full nodes:
50, 100, 150, or 200 peers. In all, we ran 8 combinations of parameters, and
we ran each combination with 67 different seeds; all told, we completed 536
simulations. The seeds determined the number of transactions per second (by
sampling our KDE, as described above), and the interarrival of transactions and
blocks. In all simulations, we used 6 miner nodes, representing 6 mining pools.
Each simulation was equivalent to 120 minutes; in sum, we simulated about
45 days of blockchain operation. Blocks are generated every 2.5 minutes, like
Litecoin; our results would show Graphene to have significantly greater savings
if blocks were every 15 seconds (like Ethereum), and show significantly smaller
savings if blocks were every 10 minutes (like Bitcoin).

Our main results are shown in Fig. 1, where we evaluated the total bandwidth
ratio of Graphene to Compact Blocks, as a function of the number of nodes in the
network. Since each run is a different number of KBs, we compare the ratio of an
exact set of parameters (including the seed), varying only the protocol. Boxplots
show the distribution of results across all trials. Fig. 1(left) shows that Graphene
reduces traffic to 60% of the cost of using Compact Blocks. Note that gains
reduce to 10% (i.e., are 90% of Compact Blocks) when transaction data is also
included because they account for the largest portion of network traffic. However,
as the number of full nodes increases along the x-axis, the ratio of total traffic

7

in the network remains steady, suggesting that our results are representative of
larger networks.

We also evaluated the sum number of bytes per message type for two example
seeds, and details appear in Fig. 3. We saw that the amount of data used by
Compact Blocks is much greater than Graphene’s use of a Bloom filter and
an IBLT. In Fig. 2, we also grouped our larger set of results according to
transactions-per-second, and found that Compact Blocks generates a wide range
of bytes-per-transaction, even at the lowest transactions-per-second rate. In
contrast, Graphene is both more efficient and stable as load changes. Even when
more transactions are generated, Graphene uses less traffic because the difference
between the IDpool (of size m) and the block (of size n) is small, perhaps even
zero, causing both its Bloom filter and IBLT to be negligible in size — see Eq 1.

5 Conclusion

We presented Graphene, a protocol that uses Bloom filters and IBLTs for efficient
block propagation. We have shown that Graphene is strictly more efficient than
Compact Blocks unless the set of unconfirmed transactions held by peers is
1,287,670 times larger than the block size. Typically, the savings are significant
on a per block basis. Additionally, using a detailed network simulation, we have
demonstrated that Graphene reduces network traffic compared to the-state-of-
the-art use of Compact Blocks.

References

1. Andresen, G.: O(1) Block Propagation. https://gist.github.com/gavinandresen/
e20c3b5a1d4b97f79ac2 (August 2014)

2. Bloom, B.H.: Space/Time Trade-offs in Hash Coding with Allowable Errors. Com-
mun. ACM 13(7), 422–426 (Jul 1970)

3. Corallo, M.: Bip152: Compact block relay. https://github.com/bitcoin/bips/blob/
master/bip-0152.mediawiki (April 2016)

4. Eppstein, D., Goodrich, M.T., Uyeda, F., Varghese, G.: What’s the Difference?:
Efficient Set Reconciliation Without Prior Context. In: ACM SIGCOMM (2011)

5. Ethereum Homestead Documentation. http://ethdocs.org/en/latest/
6. Goodrich, M., Mitzenmacher, M.: Invertible bloom lookup tables. In: Conf. on

Comm., Control, and Computing. pp. 792–799 (Sept 2011)
7. Hanke, T.: A Speedup for Bitcoin Mining. http://arxiv.org/pdf/1604.00575.pdf (Rev.

5) (March 31 2016)
8. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (May 2009)
9. Russel, R.: Playing with invertible bloom lookup tables and bitcoin trans-

actions. http://rustyrussell.github.io/pettycoin/2014/11/05/Playing-with-invertible-
bloom-lookup-tables-and-bitcoin-transactions.html (Nov 2014)

10. Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.:
Zerocash: Decentralized anonymous payments from bitcoin. In: IEEE S&P. pp.
459–474 (2014)

11. Tschipper, P.: BUIP010 Xtreme Thinblocks. https://bitco.in/forum/threads/buip010-
passed-xtreme-thinblocks.774/ (Jan 2016)

8

https://gist.github.com/gavinandresen/e20c3b5a1d4b97f79ac2
https://gist.github.com/gavinandresen/e20c3b5a1d4b97f79ac2
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
http://ethdocs.org/en/latest/
http://arxiv.org/pdf/1604.00575.pdf
http://rustyrussell.github.io/pettycoin/2014/11/05/Playing-with-invertible-bloom-lookup-tables-and-bitcoin-transactions.html
http://rustyrussell.github.io/pettycoin/2014/11/05/Playing-with-invertible-bloom-lookup-tables-and-bitcoin-transactions.html
https://bitco.in/forum/threads/buip010-passed-xtreme-thinblocks.774/
https://bitco.in/forum/threads/buip010-passed-xtreme-thinblocks.774/

	Graphene: A New Protocol for Block Propagation Using Set Reconciliation

