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Abstract—Existing censorship circumvention systems fail to
offer reliable circumvention without sacrificing their users’ QoS
and privacy, or undertaking high costs of operation. We have
designed and implemented a censorship circumvention system,
MassBrowser, whose goal is to offer effective censorship circumven-
tion to a large mass of censored users, with a high quality of service
(QoS), low cost of operation, and adjustable privacy protection.
Towards this, we have made several key decisions in designing
our system. First, we argue that circumvention systems should
not bundle strong privacy protections (like anonymity) with
censorship circumvention. Additional privacy properties should
be offered to the users of circumvention systems as optional
features which can be enabled by specific users or on specific
connections (perhaps by trading off some QoS). Second, we have
engineered MassBrowser by combining various state-of-the-art
circumvention techniques to ensure strong censorship resilience
at a very low cost of operation (i.e., $0.0001 per censored client
per month when deployed at a large scale). In particular, Mass-
Browser aims at increasing the collateral damage of censorship by
employing a “mass” of normal Internet users, from both censored
and non-censored areas, to serve as circumvention proxies. Also,
MassBrowser uses various techniques, like CDNBrowsing, to
optimize the loads on circumvention proxies.

We have built and deployed MassBrowser as a fully opera-
tional system with end-user GUI software for major operating
systems. Our system has been in the beta release mode for
over a year with hundreds of invited users from major censored
countries testing it on a daily basis.

I. INTRODUCTION

The Internet plays a crucial role in today’s social and
political movements by facilitating the free circulation of
speech, information, and ideas; democracy and human rights
throughout the world critically depend on preserving and
bolstering the Internet’s openness. Consequently, repressive
regimes, totalitarian governments, and corrupt corporations
regulate, monitor, and restrict the access to the Internet, which
is broadly known as Internet censorship. The techniques com-
monly used to enforce censorship include IP address blocking,
DNS hijacking, and TCP content filtering [41], [25], [39],

[65] to block access to certain destinations or to prevent
certain forms of content from being transmitted. To ensure
compliance and to detect undercover political/social activists,
repressive regimes additionally utilize advanced networking
tools, including deep packet inspection (DPI), to prevent the
use of the censorship circumvention technologies by their
citizens [81], [16], [36], [37].

To restore the openness of the Internet, researchers have
designed and deployed an arsenal of tools [25], [66], [14], [42],
[47], [78], [33], [77], [8], [84], [32], [53] to help users bypass
censorship. Such tools, known as circumvention systems, de-
ploy a variety of techniques ranging from IP indirection to
onion routing to traffic obfuscation [39], [65].

Key shortcomings of existing systems: Unfortunately, ex-
isting circumvention systems fail to offer reliable, low-cost
circumvention without sacrificing their users’ QoS or privacy.
Specifically, existing systems suffer from one or all of the
following weaknesses: (1) Easily blocked: A majority of
in-the-wild circumvention systems, including Tor, Lantern,
Psiphon, and VPNs, work by setting up proxy servers outside
the censorship regions, which relay traffic for censored users.
Unfortunately, the proxies are implemented in a way that are
easily blockable by the censors, e.g., due to using a small set
of IP addresses that can get enumerated and blacklisted by the
censors [81], [61], [79], [16]. (2) Costly to operate: To resist
proxy blocking by the censors, recent circumvention systems
have started to deploy proxies on shared-IP platforms such as
CDNs [45], App Engines [26], and Cloud Storage services [7],
a technique broadly referred to as domain fronting [20]. This
mechanism, however, is prohibitively expensive [46] to be
used at large scale. (3) Poor QoS: Proxy-based circumvention
systems like Tor and its variants [33], [44], [70] are infamous
for their low quality of service (e.g., very high latencies
and low bandwidths). This is primarily due to the imbalance
between the bandwidth demand from censored users versus the
bandwidth provided by the proxies (e.g., Tor’s ≈ 6500 relays
need to proxy traffic for around two million daily users [64],
while some users leverage Tor for bandwidth-extensive ap-
plications like BitTorrent. (4) Lack of user-adjustable pri-
vacy: Existing circumvention systems do not give users much
control on their privacy protection while using such systems.
On one hand, some circumvention systems like Tor bundle
strong privacy protections like anonymity with circumvention,
causing huge degradations to QoS and therefore scaring away
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typical Internet users. On the other hand, VPNs and one-hop
proxy-based systems provide weak privacy protections to their
users regardless of specific privacy needs of different users.
(5) Hard to deploy: Modern circumvention systems proposed
in academia are impractical to be used at large scale due to
various reasons. For instance, decoy routing systems [32], [84],
[38] require wide adoption by Internet ISPs, and tunneling
systems [33], [35], [44], [70] can be disabled by third-party
service providers they use for tunneling.

Our contributions: In this paper, we present the Mass-
Browser circumvention system, which aims at addressing the
discussed shortcomings of existing circumvention solutions.
Towards this goal, we base our design on the separation of
properties (SoP) principle: the key feature targeted by an
effective circumvention system should be blocking resistance,
and other features such as anonymity and browsing privacy
should be provided as optional features to the users. We argue
for the SoP principle based on the real-world observation [10],
[11], [71], [72], [21] that the majority of censored users are
solely interested in blocking resistance, e.g., to be able to
access blocked news articles and be able to communicate
through blocked social networks, but for the majority of the
censored users properties like anonymity are not a concern.
This is evident by the fact that “public” VPNs, “public”
HTTP proxies, and centralized circumvention systems like
Lantern [40] and Psiphon [58] are the most popular among
censored users in China and Iran [71], [72] (when compared
to privacy-preserving alternatives like Tor) despite the fact
that they provide no anonymity or browsing privacy [11].
MassBrowser users can enable stronger privacy protections for
specific (e.g., more sensitive) connections by compromising on
the QoS of those specific connections.

The SoP principle enables us to optimize the performance
of MassBrowser around blocking resistance, and to offer
features like anonymity and browsing privacy as options to
the users. We will demonstrate how basing our design on the
SoP enables us to overcome the circumvention shortcomings
discussed above. Note that, unlike VPNs and one-hop proxy
circumvention systems, MassBrowser does not neglect privacy
protection. Instead, it hands the control over the privacy-
usability tradeoff to the users.

In addition to separating circumvention from add-on pri-
vacy protections, we make several decisions on the technical
approach of MassBrowser to optimize its resilience, QoS, and
cost of operation. First, MassBrowser leverages censored users
in various regions to help each other bypass censorship by im-
plementing client-to-client proxying. This is motivated by our
measurements showing that users in various censored regions
are subject to different censorship regulations. Second, Mass-
Browser uses volunteer Internet users living in non-censored
areas to proxy traffic for censored users. Third, we have
implemented advanced TCP/UDP NAT traversal mechanisms
into MassBrowser, allowing censored clients to connect to
other clients and volunteer proxies behind NAT. This provides
strong censorship resilience due to the high collateral dam-
age of blocking NATed Internet users. Finally, MassBrowser
combines several techniques including CacheBrowsing [30],
selective proxying, and Domain Fronting [20] to optimize
the QoS of circumvention connections while minimizing its
operational costs. As shown in Section VI-C, we estimate

the total cost of deploying MassBrowser to be no more than
$0.0001 per active client per month once deployed at large
scale.

Deployment: MassBrowser has been under active develop-
ment and testing for over two years. We have implemented
cross-platform (Mac, Windows, and Linux) end-user GUI
software for novice clients and volunteers. Our client and
volunteer software is written in NodeJS in approximately 50K
lines of code. We have also implemented a browser bundle
which contains a customized Firefox browser pre-configured
to work out of the box.

MassBrowser’s backend services, which we refer to as the
Operator, is written in Python (approximately 10K lines of
code). The Operator runs a range of services essential to the
reliable operation of MassBrowser, from strategic pairing of
clients and proxies, to monitoring the reachability and health
of various parts of the system, to measuring the performance
of MassBrowser in censored countries.

Our system is currently in the beta release mode, and we
have been continuously testing and improving its performance
based on feedback from hundreds of invited volunteer clients
from various censored countries, including China, Turkey, and
Iran. Joining our system is currently invitation-based only, and
we expect to open the project to the public soon (pending a
security code audit by a third-party organization, Subgraph1).
Our software as well as the source code can be obtained from
https://massbrowser.cs.umass.edu.

Paper’s Organization: The rest of this paper is organized
as follows. We start by overviewing existing circumvention
solutions and their weaknesses in Section II. In Section III,
we introduce the core ideas used in the design MassBrowser,
and discuss how these ideas help MassBrowser overcome the
challenges of prior circumvention systems. We discuss the
technical decisions we made in designing MassBrowser in Sec-
tion IV, and present MassBrowser’s implementation details in
Section V. Finally, we provide various performance evaluations
in Section VI and discuss MassBrowser’s privacy guarantees
in Section VII. The paper is concluded in Section VIII.

II. BACKGROUND ON CIRCUMVENTION SYSTEMS

Internet censorship is undoubtedly the biggest threat to
the freedom of speech, ideas, and information across the
globe [23]. To help censored users regain open access to
the Internet, researchers and practitioners have designed and
deployed an arsenal of tools known as circumvention systems
[25], [66], [14], [42], [47], [78], [33], [77], [8], [84], [32], [53],
[25], [39], [65]. Censorship authorities utilize their censorship
technology to prevent the use of such censorship circumvention
technologies by their citizens [81], [16], [36], [37], i.e., they
block circumvention systems. In the following, we overview
the major classes of circumvention systems and their weak-
nesses.

Proxy-based Systems The most common approach used
by circumvention systems is to run network proxies outside
the censorship region, and use them to relay the traffic of

1https://subgraph.com/about-us/index.en.html
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censored users to censored Internet destinations. Many in-the-
wild circumvention systems such as Tor [15], Psiphon [58],
Lantern [40], and VPN services [56], [52] deploy circumven-
tion proxies in different ways to help censored users. Most
circumvention systems [58], [67], [52], [40] use simple, single-
hop proxies, while others [15], [57] use more complex models
for proxy deployment. Tor, in particular, has implemented var-
ious pluggable transports [57], [53] to further hinder blocking
by obfuscating the characteristics of Tor traffic.

Domain Fronting Domain fronting [20] is a blocking-
resistant approach for setting up circumvention proxies. In
this approach, the circumvention proxy is hosted on shared-
IP infrastructures such as content delivery networks (CDNs),
App Engines, and Cloud Computing services. Therefore the
domain-fronted proxy will share its IP address with other,
oblivious services making any censorship attempt susceptible
to collateral damage. For instance, blocking a domain-fronted
proxy hosted on a CDN requires the censors to block all the
web content served by that CDN. CloudTransport [7] is an
older variation of domain fronting, in which proxies are run
over shared cloud storage services. Recently, several major
content providers, including CloudFlare [12], Google [27], and
Amazon [3], have started to disable or interfere with domain
fronting, presumably in the fear of losing their market inside
censored countries.

CacheBrowsing CacheBrowsing [30], [85] is a technique
to fetch CDN-hosted censored content directly from CDN
edge servers with no need to use circumvention proxies.
To do so, various bootstrapping mechanisms are used to
enable a censored client to locate the CDN edge servers
hosting her censored content of interest. CacheBrowsing is
significantly cheaper [30], [46] than domain fronting since
the CDN expenses are paid by the publishers of the censored
content, not the circumvention operators. On the other hand,
CacheBrowsing has a more limited scope as it can only be
used to unblock certain censored content, i.e., those hosted
on CDNs. In this paper, we leverage CacheBrowsing as a
technique to optimize load on circumvention proxies, but not
as a standalone circumvention system.

Protocol Tunneling Several circumvention proposals sug-
gest to tunnel traffic through popular Internet services that
are unlikely to be entirely blocked by the censors. For in-
stance, FreeWave [33] tunnels circumvention traffic through
VoIP services like Skype, and CovertCast [44] tunnels traffic
through video streaming services. Alternatively, Rook [70]
and Castle [29] tunnel traffic through gaming applications,
and Sweet [35] tunnels through email communications. To
block a tunneling circumvention system, the censors will need
to block the oblivious service being used for tunnel, which
has significant collateral damage to the censors [9]. On the
downside, tunneling circumvention systems offer impractical
QoS (e.g., high latencies and low bandwidth) due to the
limitations imposed by their hosting services.

Decoy Routing Decoy routing aims at defeating IP address
blocking by integrating circumvention software into the routing
infrastructure [84], [32], [38], [50]. In decoy routing, censor-
ship circumvention is implemented with help from a number of
friendly Internet autonomous systems, called decoy ASes. Each
decoy AS modifies some of its routers (e.g., its border routers)

TABLE I. WEAKNESSES OF MAJOR TYPES OF CIRCUMVENTION
SYSTEMS

Category Easily blocked Costly Poor QoS Deployability
Proxy-Based  G#  #

Domain Fronting #  # #
CacheBrowsing # #  #

Tunneling # G#  G#
Decoy Routing # G# #  

such that they deflect the Internet traffic of censored users to
the blocked Internet destinations requested by the users. By
design, decoy routing defeats IP address blocking, however,
it is prone to particular routing-based blocking attacks known
as RAD [62], [34], [49]. Requiring deployment by a number
of in-the-wild ISPs is a major obstacle to the real-world
deployment of decoy routing systems.

A. Weaknesses of Existing Systems

Here, we summarize the main weaknesses of existing
circumvention systems, as summarized in Table I:

1) Easy to block: Proxy-based circumvention systems,
which encompass the majority of in-the-wild systems like Tor,
Psiphon, and VPN services [52], [56] can easily get blocked by
the censors who enumerate their limited, small set of proxy IP
addresses [81], [61], [79], [16]. The censors can also use more
advanced techniques like traffic analysis and active probing to
block various kinds of circumvention systems [81], [16], [61],
[31], [24], [62].

2) Costly to operate: As introduced earlier, domain fronting
aims at resisting IP address filtering by setting up proxies
on shared-IP platforms such as CDNs, App Engines, and
Cloud services. However, due to the prohibitively high costs
of domain fronting [46], domain fronting is not used for
circumvention proxying at scale, and recent proposals suggest
to use domain fronting only for circumvention signaling, but
not for proxying [63]. Several protocol tunneling systems [7]
similarly need to some pay service providers for using their
service, and decoy routing services require large investment in
order to be deployed by Internet ISPs [49].

3) Poor QoS: Proxy-based circumvention systems like Tor
suffer from low quality of services (e.g., high latencies) due
to high congestion on the proxies. Various factors contribute to
such congestion, most importantly the small number of proxies
compared to clients, as well as the use of circumvention system
by many clients for accessing bandwidth-extensive content
such as copyright infringed multimedia content. Tunneling
circumvention systems like FreeWave [33], Sweet [35], and
CoverCast [44] offer low bandwidth and high latencies to the
clients as they are constrained by the quality of service of their
host services. CDNBrowsing systems [30], [85] offer good
latencies but can only be used to browse specific types of
censored websites.

4) Lack of user-adjustable privacy: Existing circumvention
systems do not give users much control on their privacy
protection while using such systems. On one hand, some cir-
cumvention systems like Tor bundle strong privacy protections
like anonymity with circumvention, causing huge degradations
to QoS and therefore scaring away typical Internet users.
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Fig. 1. The main setting of MassBrowser.

On the other hand, VPNs and one-hop proxy-based systems
provide weak privacy protections to their users regardless of
specific privacy needs of different users.

5) Hard to deploy: Some of the circumvention systems pro-
posed in the literature are impractical to be used at large scale,
despite offering reasonable blocking resistance and QoS. For
instance, decoy routing systems [32], [84], [38], [50] require
wide adoption by Internet ISPs, and tunneling systems [33],
[35], [44] can be trivially disabled by the third-party service
providers they use for tunneling.

III. SKETCH OF OUR APPROACH

Figure 1 shows the high-level setting of MassBrowser.
MassBrowser is a volunteer-run proxy-based system: it lever-
ages normal Internet users with access to the free Internet to
proxy censored web traffic for censored users. It also uses
censored users to proxy traffic for other censored users who
face different censorship restrictions (e.g., those who reside in
different censoring countries). We will refer to the censored
clients of MassBrowser as Clients, and we will use Buddies
to refer to MassBrowser’s proxies. Note that a Buddy can be
either a volunteer (non-censored) party or a censored client of
MassBrowser.

The central component of MassBrowser is a hard-to-block
Operator service that oversees and enforces MassBrowser’s
key functionalities, particularly, by strategically matching
Clients to Buddies based on the preferences of Clients and
Buddies as well as their geographic locations, their avail-
able bandwidth, and other conditions. As will be evaluated,
Operator can handle very large numbers of users with tiny
operational costs by making minimal communications.

We will provide further details about these components and
their interactions throughout the paper. Next, we present the
key ideas behind the design of MassBrowser.

A. MassBrowser’s Threat Model

We assume that MassBrowser Clients are located inside
censoring regions. The censorship authorities monitor the

Internet communications of the censored Clients, and are able
to block or interfere with any connection from such Clients to
Internet destinations. Censors are also able to act as Clients
or Buddies in order to gain information about the system and
to disrupt the system to the best of their ability. However, we
assume that censors are not capable of tampering with users’
devices (e.g., installing monitoring softwares on their devices),
as this will disable any privacy-enhancing tool.

We assume the players in our system to be rational. A ra-
tional censor tries to minimize the costs and collateral damages
incurred by its actions, such as interfering with benign, popular
Internet services. Buddies are rational in that they are willing
to help censored users as long as this does not pose any risks
to themselves. For example, a Buddy will not let Clients use
her device to deploy network attacks (e.g., port scan, sending
spam email) or to access controversial destinations that will
get the Buddy in trouble.

We also assume that the censors do not penalize normal
users for the sole act of using a circumvention software
or accessing an unblocked destination, unless the websites
accessed are directly related to major criminal offenses. Al-
though using circumvention tools is considered illegal in many
censoring countries, penalizing Internet users merely for using
a circumvention software has been extremely rare in most
countries [10]. For example, as of 2017, Facebook has over
17 million users from Iran accounting for over 20% of the
population [5], despite it having been blocked for more than
8 years. Our threat model assumes that the censored clients
are aware of, and accept the (negligible) risks of using a
circumvention software.

B. Separation of Properties

We rely on the separation of properties (SoP) principle
in order to overcome the practical shortcomings of existing
circumvention solutions. The SoP principle states that the key
feature targeted by a circumvention system must be blocking
resistance, and additional properties such as anonymity and
browsing privacy should be provided as optional features
to the users. The SoP principle is based on the real-world
observation [10], [11], [71], [72], [21] that the majority of
censored users are solely interested in blocking resistance,
e.g., to be able to access blocked news articles or to be able
to communicate through blocked social networks; however,
the majority of the censored users are not seeking properties
like anonymity [83]. Our claim is supported by the ostensible
popularity of “public” VPNs, “public” HTTP proxies [71],
[72], [83], [82] and centralized circumvention systems like
Lantern [40] and Psiphon [58], in contrast to privacy-focused
solutions such as Tor. For instance, an estimated 31% of
Chinese users use VPN services [83] compared to Tor’s only
2 millions daily users globally.

The SoP principle allows us to run single-proxy circumven-
tion connections, which improves the QoS-cost tradeoff. Also,
the principle allows us to restrict the use of our circumvention
proxies to accessing censored content only. This not only
reduces congestion on the proxies (therefore improving the
QoS-cost tradeoff), but also increases the potential number of
volunteer proxies by significantly reducing the legal conse-
quences of running circumvention proxies, which has been a
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Fig. 2. The cumulative distribution of the number of countries that a website
is blocked in, for different content types.

major issue for general purpose circumvention systems like
Tor [6], [4].

Our system provides user-adjustable privacy, unlike ex-
isting circumvention systems. Specifically, VPNs and single-
hop circumvention systems like Psiphon and Lantern provide
no privacy protection, and Tor provides strong privacy for
all users, across all connections. In MassBrowser, however,
a client can choose to protect his sensitive connections by
tunneling them through an integrated interface with Tor (and
therefore only pay a QoS cost for those sensitive connections).

C. Client-to-Client Proxying

The key to the resilience and QoS of any volunteer-based
circumvention system like ours is to have a balanced ratio of
proxying capacity to circumvention bandwidth demand. A key
technique we use in MassBrowser is having censored clients
help other censored clients by proxying their traffic. What
enables us to do so is the difference in censorship blacklists
across different censorship regions, as demonstrated in various
measurement studies [51], [54], [55].

To demonstrate the extent of usability of client-to-
client proxying, we use the measurement data provided by
ICLab [51] and GreatFire [81]. For each website, we compute
the number of countries that the website is blocked in. As
shown in Figure 2, the majority of censored websites are
only blocked in one or two countries. This is specially more
apparent for political and news content, as censorship rules
on such content are heavily dependent on geographic regions.
Therefore, an Iranian MassBrowser client can help a Chinese
MassBrowser client to access webpages blocked in China,
and vice versa. Figure 3 illustrates the intersection of blocked
domains in three major censoring countries of China, Iran,
and Turkey. We believe that using clients-to-client proxying
is a major step towards balancing the ratio of circumven-
tion proxies to circumvention traffic, and therefore improving
circumvention QoS. Also, as we will discuss later, using
clients/volunteers for proxying also offers strong censorship
resilience properties by increasing the collateral damage of
censorship.

27852 1564
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29 205
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Fig. 3. Comparing website blacklists in three major censorship regions.

D. Leveraging Volunteer Proxies

MassBrowser complements client-to-client proxying by
employing volunteer Buddies who live in non-censored areas
(e.g., to proxy content commonly blocked across various
censoring countries). We use various techniques (discussed in
Section IV-B) to encourage a wide adoption by volunteers.
Note that, we are not the first to suggest to use volunteers
in deploying circumvention proxies. In the following, we
compare MassBrowser to alternative circumvention systems
that also use volunteer proxies.

uProxy [67]: uProxy (currently, deprecated [67]) is another
proposal to use volunteer Internet users as proxies for censored
users. uProxy’s original design [69] used the WebRTC protocol
to connect a censored user to a volunteer proxy with an
installed Chrome plugin. The uProxy project lately shifted to-
wards using Shadowsocks [68] for connecting users to servers.
uProxy did not use any central operator as in MassBrowser;
instead, a uProxy censored user was supposed to know a friend
outside the censorship region to act as her proxy. That is,
uProxy would enable clients to set up “private” proxies, very
much similar to private VPNs. We believe that this is not a
scalable solution, as many censored users do not have close
friends with access to the free Internet to help them.

FlashProxy [22], [19]: FlashProxy (currently, depre-
cated [22]) suggested to use volunteer websites to recruit
ephemeral proxies. The volunteer website would load a par-
ticular JavaScript on each of its visitors, turning them into
ephemeral proxies for censored clients. Even though a Flash-
Proxy volunteer website would present a banner to its visitors
informing them of the process, the visitors had no way to opt
out except by refraining from visiting that website. We believe
that high-visitor websites are unlikely to become volunteers as
this may decrease their visitors. Additionally, the censors may
retaliate by simply censoring (or even attacking) the volunteer
websites.

Snowflake [63]: Snowflake is the successor of the FlashProxy
project and uses some of the core communication protocols
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of uProxy [69], e.g., its WebRTC communication schemes.
Similar to FlashProxy, Snowflake converts the visitors of some
volunteer websites into circumvention proxies by loading a
JavaScript. Therefore, we argue that a major challenge to
Snowflake is adoption by volunteer websites: a volunteer
website may get the target of censorship or cyberattacks by
the censors, and therefore we do not expect adoption by major
websites. Note that deployment by low-visitor websites does
not help since the number of the proxies is proportional to the
number of the visitors to the volunteer websites. Also, similar
to Flashproxy, users in Snowflake have no way to opt out
except by refraining from visiting the volunteer websites. By
contrast, in MassBrowser we use Internet users to knowingly
and voluntarily proxy traffic for censored users. Also, we use
a hard-to-block central entity (the Operator) to strategically
matchmake clients and volunteer proxies. MassBrowser im-
plements various traffic optimization techniques and selective
proxying to encourage volunteer proxying by respecting their
preferences.

VPNGate [52]: VPNGate is a network of volunteers running
VPN software open to the public. The VPNGate system
maintains the list of all volunteer VPNs, and publishes the list
on its webpage [75] for the interested clients. Unfortunately,
VPNGate does not employ effective mechanisms to resist
blocking, and therefore it is trivially blockable by the censors.
The VPNGate website contains fake VPN IP addresses to
prevent the censors from blacklisting the VPN IPs in bulk,
however, the censors can easily identify and ignore such fake
IPs by trying to connect to them through VPN protocols. In
fact, the majority of VPNGate proxies appear to be currently
blocked in China [73], [74]. By contrast, in MassBrowser a
blocking resistant Operator component establishes the con-
nections between clients and proxies, preventing the censors
from enumerating the proxies. Even if the censors enumerate
MassBrowser’s Buddy IPs, they can not block them without
collateral damage as such IPs are NATed IPs with ephemeral
port numbers, i.e., they change their port numbers for every
connection. Additionally, MassBrowser deploys traffic ob-
fuscation to defeat traffic analysis, while VPNGate’s VPN
traffic is trivially detectable at the network layer. As another
distinction, MassBrowser employs various selective proxying
techniques to optimize traffic load on volunteer proxies.

E. How MassBrowser Addresses Circumvention Issues

Here we summarize how MassBrowser addresses the major
circumvention issues discussed in Section II-A. This will be
further expanded later on.

1) Blocking resistance: As discussed earlier, proxy enumer-
ation is the most common technique used by the censors to
block circumvention systems. Proxy enumeration is feasible in
practice due to two reasons; first, the small number of proxy IP
addresses used by typical circumvention systems enables the
censors to enumerate all the IPs within a short interval [81].
Second, typical circumvention proxies use dedicated IP ad-
dresses that once identified can be blocked with no collateral
damage. Domain fronting defeats IP blocking by using shared
IP addresses, however is prohibitively expensive as a scalable
solution.

MassBrowser deploys a large number of proxies run by

normal Internet users—either censored clients or non-censored
volunteers. Therefore, the number of relay IPs of MassBrowser
scales with the number of its users. Also, as the relays are
run by normal Internet users, they are expected to frequently
change IP addresses and use shared NATed IPs. Therefore,
blocking such moving targets can impose significant collateral
damage to the censors.

2) Cost of operation: Similar to (the prohibitively expen-
sive) domain fronting [20] and CloudTransport [7] systems,
MassBrowser makes use of shared IP addresses to defeat
IP enumeration. By contrast, MassBrowser is significantly
cheaper to operate as the voluminous circumvention traffic is
proxied through censored clients and volunteer proxies. Also,
while MassBrowser’s Operator is implemented as a domain-
fronted service to resist blocking, it only costs MassBrowser
an estimated $0.001 per active client per month due to the
small volume of its signaling traffic.

3) QoS: MassBrowser combines several complimentary tech-
niques to offer a high QoS. First, it leverages CacheBrows-
ing [30] to minimize the traffic load on the proxies. Second,
being based on the SoP principle, MassBrowser uses single-
hop proxies for its connections (for the majority of the users
who do not demand anonymity), and restricts the use of proxies
to censored content. Third, as discussed above, the number of
proxies in MassBrowser scales with the number of its users.

4) User-adjustable privacy: Existing circumvention solutions
either provide weak privacy on all connections (e.g., as in
VPNs, Lantern, Psiphon) or provide strong privacy on all
connections and for all users (e.g., as in Tor). By contrast,
MassBrowser allows its users to adjust their privacy protection
for different connections based on their needs, offering a
more usable privacy-QoS tradeoff. Specifically, by default,
MassBrowser connections are established through one-hop
(fast) MassBrowser relays; however, a client can choose to
tunnel some or all of her connections through MassBrowser’s
Tor interface. MassBrowser’s Tor interface is run by some
Buddies that act as Tor bridges [14]. Therefore, MassBrowser’s
Buddy software can be used as a pluggable transport [57]
by Tor bridges. We evaluate MassBrowser’s cost of operation
when used as a Tor pluggable transport, showing that it is
drastically cheaper than meek [45], while both offering similar
blocking resistance properties (both meek and MassBrowser
aim at increasing the censors’ collateral damage by making
use of shared IP addresses). We will provide a more detailed
privacy discussion in Section VII.

5) Deployment feasibility: Unlike approaches like decoy rout-
ing systems [32], [84], [38] and tunneling systems [33], [35],
[44], MassBrowser does not require cooperation/deployment
from third-party Internet operators. Also, while MassBrowser’s
Operator is hosted as a domain-fronted service, it can be
deployed using any low-bandwidth, high-latency covert com-
munication mechanism [35], [33] if domain fronting is widely
disabled [27], [3]. Our system is currently in beta release
mode with user-friendly GUI software for both volunteers and
clients.

IV. TECHNICAL DESIGN DECISIONS

In this section, we discuss our design decisions aimed at
designing MassBrowser as a reliable circumvention system
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with practical a tradeoff between QoS, cost of operation, and
user privacy.

A. Blocking Resistance

We use the following core techniques to provide strong
blocking resistance in MassBrowser.

Use of shared, dynamic proxy IPs to resist IP enumeration:
As MassBrowser proxies are run by normal Internet users
(either censored clients or non-censored volunteers), blocking
them is costly and prone to collateral damage. First, a typical
Buddy will most likely have a NAT IP address, therefore
sharing a public IP address with other users/services in the
same network. For instance, a Buddy connecting from a coffee
shop will share a public IP with other users in the area (we
will describe how MassBrowser enables connections despite
NAT). Additionally, a typical Buddy will frequently change
IP addresses, e.g., by moving across networks, amplifying the
collateral damage. Second, the number of MassBrowser’s relay
IPs scales with the number of its users as it deploys client-
to-client proxying. Also, we have employed various social
engineering techniques to attract a large number of volunteer
proxies.

Traffic Obfuscation and Encryption: All MassBrowser com-
munications are encrypted to prevent deep-packet inspection.
Specifically, MassBrowser deploys traffic obfuscation mecha-
nisms to remove protocol fingerprints and prevent censors from
detecting MassBrowser traffic based on traffic characteristics
like packet timings and sizes.

Domain Fronting the Operator: MassBrowser’s Operator
runs as a domain fronted service [20]. As discussed earlier, a
domain fronted service runs behind a network infrastructure
with shared IPs (e.g., CDNs), therefore blocking it will cause
significant collateral damage to the censors. Although domain
fronting is a relatively expensive technique, the costs of domain
fronting MassBrowser’s Operator is very low due to the small
volume of the control traffic generated by the Operator, as
shown in Section VI-C. Note that while MassBrowser’s Oper-
ator is hosted as a domain-fronted service, it can be deployed
using any low-bandwidth, high-latency covert communication
mechanism [35], [33] if domain fronting is widely disabled in
the wild [27], [3]. Furthermore, with the ongoing adoption of
TLS1.3 [59] and encrypted SNI [60] by CDNs (e.g., Cloudflare
and Google CDN), domain fronting can be performed with
no need to modifying the SNI field of TLS connections
(therefore it can not be disabled by CDN providers who
support encrypted SNI).

B. Optimizing Cost and QoS

As discussed earlier in Section III, blocking resistant cir-
cumvention systems suffer from either low QoS or high cost
of operation (or both). We argue that the main reason for the
poor QoS/high cost of existing circumvention systems is the
extreme disproportion between available proxying throughput
and the bandwidth demand from censored clients. We therefore
take the following two complimentary approaches to alleviate
such disproportion.

Optimizing load on proxies through selective proxying: We
use the following techniques to minimize the traffic load on
MassBrowser proxies.

a) Whitelisting censored content only: Existing circumvention
tools like Tor and VPNs tunnel all network traffic of a censored
client through circumvention proxy, including censored and
non-censored content. This is done in Tor to provide anonymity
on all connections, but even non-anonymous tools like VPNs,
Lantern, and Psiphon tunnel all traffic through circumvention
proxies for the ease of operation. We believe that this is one
of the key reasons constituting to high bandwidth pressure
on in-the-wild circumvention proxies (causing their low QoS).
We evaluated the list of top bandwidth-consuming domains
provided to us by a major non-anonymous circumvention tool2
for the day of Feb 21, 2008. Our evaluation finds that 48% of
the proxied traffic belongs to websites that are not censored in
Iran (total proxied traffic is 3.56 TB).

Tunneling non-censored content through a circumvention
system not only puts additional burden on the proxies, it also
lowers the quality of service for most of the non-censored
websites, e.g., a Chinese user will have to access a (non-
censored) China-based website through a US-based proxy,
therefore increasing the latency. Basing our design on the
SoP principle, we restrict the use of MassBrowser Buddies
to censored-content only. Therefore, our Client software only
proxies censored content through Buddies and retrieves non-
censored content directly with no proxy, and the Buddies
deploy whitelists to proxy only censored content. Needless to
say, a MassBrowser client can divert her privacy-sensitive (but
not censored) connections to MassBrowser’s Tor interface.

b) CacheBrowsing: MassBrowser uses a recent circumvention
technique called CacheBrowsing [30], [85] to further minimize
the load on the proxies. In CacheBrowsing, a client directly
fetches a censored object hosted on CDN from the hosting
CDN’s edge servers, without using proxies. However, a limi-
tation of CacheBrowsing is that it can only retrieve censored
content hosted on a CDN and accessible through HTTPS,3
therefore it can not be used as a standalone circumven-
tion system. We integrate CacheBrowsing into MassBrowser’s
client software. That is, a MassBrowser client will fetch the
CDN-hosted censored content directly from CDNs using the
CacheBrowsing technique, and only use MassBrowser Buddies
for the censored content not hosted on CDNs. Based on our
analysis, this saves 41% of bandwidth on the Buddies for Alexa
top 1000 websites.

c) Strategic proxy assignment: MassBrowser’s Operator is re-
sponsible for matchmaking Clients and Buddies. The Operator
considers various factors, including the regions, bandwidths,
and the preferences of the clients and relays in pairing them
together.

Incentivizing volunteer proxies: We use the following
approaches to increase the number of volunteer proxies. We
envision a large fraction of MassBrowser Buddies to be from
typical Internet users with little technical background. We
therefore design a GUI-based client software for Buddies to

2We do not disclose their identity per their request.
3We call such webpages CacheBrowsable.
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offer a user-friendly experience, transparency, and full, fine-
grained control over what they proxy. Our Buddy GUI offers
the following features.

a) Imperceptible operation: Our Buddy GUI runs imper-
ceptibly and does not interfere with the volunteer’s normal
activities. The volunteer user will only need to perform a one-
time installation and setup of the relay software, and may then
let it operate until she needs to adjust her preferences.

b) Transparency on usage: Our Buddy GUI offers the volun-
teer with information on how the proxy is being used.

c) Enable relays to limit proxied bandwidth: The Buddy
software enables a volunteer Buddy operator to specify how
much bandwidth she is willing to donate to MassBrowser. Even
a small donated bandwidth can help MassBrowser clients due
to the bandwidth minimization mechanisms discussed above.

d) Enable relays to whitelist destinations: Our MassBrowser
relay software enables a volunteer to proxy traffic only to
Internet destinations she is comfortable with. A major set-back
for volunteers is the potential legal consequences of relaying
traffic to controversial destinations (such as those experienced
by Tor exit relay operators [4], [6]). In MassBrowser, relays
whitelist the categories of destinations they are willing to proxy
traffic to, e.g., a relay can decide to relay traffic only to news
websites or scientific websites.

e) Optional financial incentives: Future versions of Mass-
Browser may incorporate financial incentives for volunteers,
either as the form of a service like Bitcoin mining by clients,
or monetary compensation. We leave the investigation of
incorporating such economic incentives with MassBrowser to
future work.

Client to client proxying: As discussed earlier in Sec-
tion III-C, censored users in various regions are subject to dif-
ferent censorship blacklists. Therefore, we leverage censored
clients to proxy traffic for other censored clients in different
regions, which improves the overall QoS of the connections
by scaling the number of proxies with the number of clients.
The matchmaking between the clients is performed by the
Operator based on client preferences, locations, and bandwidth
resources. Note that in our system, a client is able to opt out
of being used as a proxy for other clients. To encourage client
participation, we only allow oped-in Clients to benefit from
other Clients as proxies.

C. User-adjustable privacy

We have integrated a Tor interface in MassBrowser Client
and Buddy software. This enables MassBrowser clients to
divert their privacy-sensitive connections to this interface,
while performing their non-sensitive communications through
MassBrowser’s regular network (expectedly, with much better
QoS). MassBrowser’s Tor interface is run by volunteer Buddies
who opt in to serve as Tor bridges [14] for MassBrowser
Clients. We envision that existing Tor bridges can also add
support for MassBrowser, as a new type of pluggable trans-
port [57]. We will provide a more detailed privacy discussion
in Section VII.

V. MASSBROWSER’S IMPLEMENTATION

In this section, we discuss the implementation of Mass-
Browser’s key technical components. We present further im-
plementation details (including our backend services, browser
bundle, GUI software, etc.) in Appendix A.

A. Connecting Users Behind NAT

As MassBrowser Clients and Buddies are regular Internet
users, most of them will likely be connecting to the Internet
using NATed IP addresses. Therefore, an important challenge
to MassBrowser’s operation is enabling communication be-
tween NATed Clients and Buddies, i.e., MassBrowser needs
to deploy NAT traversal techniques [80], [43]. Typical NAT
traversal techniques, however, may not be applicable for all
transport protocols depending on the type of a peer’s NAT,
i.e., depending on how the underlying NAT maps local IPs to
public IPs. Matthews et al. [43] perform a thorough analysis
of different NAT deployments in the Internet and how NAT
traversal techniques may apply to them. We categorize Mass-
Browser peers (i.e., Clients and Buddies) into three categories
based on the type of their NATs.

TCP Reachable: These are the peers with whom it is possible
to initiate a TCP connection, either directly or via some
existing NAT traversal technique.

UDP Reachable: For such peers, we are not able to initiate
TCP connections, but are still able to send UDP packets to
them via some NAT traversal technique. These peers reside
behind Restricted NATs as defined by Wing et al. [80].

Unreachable: Such peers are located behind NATs that
prevent the use of any NAT traversal technique. Wing et
al. [80] classify these NATs as Symmetric NATs.

MassBrowser’s Operator serves as a STUN server to dis-
cover the NAT type of each peer. The Operator then uses the
discovered NAT type of the peers to match Clients and Bud-
dies, and to decide which party should initiate the connection,
as shown in Table II. For any pair of a Client and a Buddy,
they can communicate if at least one of them is reachable
from behind NAT. As can be seen, when both of the peers
are reachable, the Client initiates the connection. When both
peers are UDP reachable, MassBrowser’s software tunnels a
TCP connection through an established UDP tunnel. If none
of the peers are reachable, a MassBrowser connection can not
be established between these peers, and therefore the Operator
will not map an unreachable Client to an unreachable Buddy.

Note that MassBrowser’s Operator does not deploy a
TURN server; a TURN server will need to proxy the con-
nections between (unreachable) Clients and Buddies, which
is significantly expensive and bandwidth-extensive for a free
circumvention system like ours. Additionally, a circumvention
TURN server can easily get blocked by the censors unless
it is deployed as a (prohibitively expensive) domain fronted
service.

B. Assigning Buddies to Clients by the Operator

The Operator is in charge of coordinating Client and Buddy
communications and providing Clients with online Buddies to
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TABLE II. CONNECTION INITIATION FOR A MATCHED PAIR OF
CLIENTS AND BUDDIES. IF BOTH THE CLIENT AND BUDDY ARE

UNREACHABLE, THE OPERATOR WILL NOT MATCH THEM TOGETHER.

Buddy
TCP-Reach UDP-Reach Unreach

C
lie

nt

TCP-Reach Client Buddy Buddy
UDP-Reach Client Client Buddy

Unreach Client Client 7

use as relays. The Operator assigns Buddies to Clients with
the following considerations.

Buddy destination whitelists: Buddies can whitelist des-
tinations they are willing to proxy traffic to based on their
content types. The Operator actively maintains Buddy whitelist
preferences. When a Client queries the Operator for new
Buddies, the Operator will respond with Buddies that allow
the intended destinations in their whitelists.

Buddy loads: The MassBrowser system is a heterogeneous
network composed of machines with varying processing pow-
ers and network bandwidths. The Operator approximates a
Buddy’s available throughput based on the bandwidth limit
set by the Buddy owner, the number of active Clients assigned
to that Buddy, Buddy’s reliability over time. This is used to
balance the load on Buddies when assigning Buddies to new
Clients.

Parties’ NAT types: The Operator also considers the NAT
types of the peers in matching Clients and Buddies, as de-
scribed above.

Sybil attack protection: As discussed in Section VII, a censor
can not block the Buddies that she obtains from the Operator,
nor can she identify their clients (since Buddy IPs are NATed).
However, a resourceful censor may overload the identified
Buddies in order to consume their circumvention capacity
(i.e., DoS the Buddies). Note that this will be a costly DoS
attack due to the symmetry between the load on the attacker
and the target. Nonetheless, our Operator can deploy standard
Sybil protection mechanisms against such an expensive DoS
attack. We have particularly implemented the Sybil protection
mechanism of Nasr et al. [48], which uses a strategic reputation
system to pair clients and proxies.

C. Selective Proxying Through Whitelisting

As discussed earlier in Section IV-B, MassBrowser deploys
selective proxying to optimize the load on the Buddies as
well as to enable them to enforce their proxying preferences.
Specifically, MassBrowser inspects every network request in-
dividually to decide how to best handle that request; this is in
contrast to standard circumvention systems that naively proxy
everything through their circumvention proxies. To perform
such per-request proxying, MassBrowser creates a content
whitelist, which specifies how different content objects should
be handled. The whitelist is maintained by the Operator and
is regularly synced by all of the Buddies and Clients.

Creating the Whitelist: We create our list of censored
domains using the data released by several recent censorship
measurement studies, in particular, the IClab [51] and Great-
Fire [28], that have assembled lists of censored domains for
different censorship areas (note that we exclude controversial

censored webpages, such as adult content, from our list to
preemptively protect our Buddies; such objects are fetched
through Tor, as explained later). For each of the censored
domains in our list, we identify all of its web objects and create
rules for fetching each of those objects. This is done using our
automated technique that crawls each censored website using
the Chrome web browser and follows all of its inner links (with
a depth 3), then creates regular expressions to identify all the
corresponding domains/subdomains of that censored domain.
For each web object, our crawler creates one of the following
three rules:

• If the object is not censored, it will be assigned a
NonCensored tag; such objects will be fetched directly
through the Internet (without using a Buddy).

• If the object is censored, our crawler will check if it can
be browsed through CacheBrowser [30], [85]. If yes, it
will be assigned a CacheBrowsable tag, and it will
create rules on how to fetch it from CDNs (we use the
code from prior work [30], [85]).

• Finally, if the object is censored but not CacheBrowsable,
it will be assigned a MassBrowsable tag; such objects
will be fetched through a Buddy.

We perform a similar whitelisting mechanism for non-web
objects that are generated by other applications. For instance,
we have created rules for Telegram and Tor traffic based on
the IP addresses of Telegram servers and public Tor relays.

Enforcing the Whitelist: Figure 4 demonstrates the selective
proxying process performed by a MassBrowser Client for each
requested object, based on the content whitelist. Note that,
in order to enforce such whitelisting policies, the Client’s
web browser delegates DNS resolution to MassBrowser’s
Client software (this requires disabling the browser’s DNS
caching); therefore, proxy destinations must be hostnames, not
IP addresses. This enables distinguishing requests to different
hosts that resolve to same (shared) IP addresses. For every web
request by a user, the Client software looks up the requested
destination hostname in the whitelist, identifies which website
the hostname belongs to, identifies whether the website is
censored, and determines the content types associated with
that website. If the request is censored and the Client already
has an open session with a Buddy that supports the required
content’s type, it will use the existing connection to proxy that
request. Otherwise, the Client will be assigned a Buddy who
has whitelisted the category of the requested content.

Maintaining the Whitelist: Note that the Operator regularly
updates its whitelists by adding/updating rules for censored
websites (e.g., based on the most recent measurement data).
The Operator regularly (once a day) pushes the changes of the
whitelist to all Clients and Buddies, which they incorporate
into their local whitelist databases.

Enforcing Buddy Preferences: Each whitelisted domain is
assigned a content category as shown in Table III. Each Buddy
is able to choose what categories of censored content she is
willing to proxy to (as shown in Figure 5). If a Buddy disallows
a category, it will not proxy any websites from that category.
As explained above, a Buddy is in charge of performing DNS
resolution for its Client requests; therefore the Buddy will be
able to ensure that the Client is not violating the Buddy’s
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Fig. 4. Optimizing proxying load by a MassBrowser Client through selective proxying. The Client will check each requested object against the content
whitelist, as introduced in Section V-C, to decide how to handle the requested object. If the requested object is non-censored, it will be obtained directly; if
it is CacheBrowsable, it will be obtained from the corresponding CDN servers; otherwise, the object will be requested through a Buddy (if it is tagged as
MassBrowsable), or sent through Tor if no Buddy supports that censored object.

destination restrictions.

Note that to preemptively protect our Buddies, we have
excluded controversial webpages/categories (such as adult con-
tent) from the whitelist of Buddies. As shown in Figure 4, for
a requested domain that is not whitelisted, MassBrowser will
request it through a generic circumvention system; our current
design sends such connections through Tor. Note that in such
a setting, MassBrowser will act as a Tor bridge [14], so it is
not impacted by the potential censorship of Tor.

Fig. 5. The settings page in the MassBrowser Buddy software allowing the
user to select it’s allowed content types

The Complexity of Whitelisting: We store the whitelists
as regular expressions in a hashmap data structure in which
each key consists of the two right-most part of the domain
name, and its corresponding value is the regular expression.
Whenever a new connection arrives, the client extracts the two
right-most domain name of that connection, and checks against
the whitelist. If it is not found, it is considered to be non-
censored. If the domain is in the list, the client will check if the
whole domain matches the corresponding regular expression,

TABLE III. CONTENT CATEGORIES IN MASSBROWSER

Category Example
News CNN, BBC, ...
Email Gmail, Ymail, ...

Search Engine Google, Bing, ...
Gaming Steam, Blizzard, ...

Social Network Facebook, Twitter, ...
Sharing Platforms Dropbox, Flicker, ...

Messaging Telegram, Whatsapp, ...
Tor Tor

which has a time complexity of O(s), where s is the length
of the URL. Therefore, the worst case time complexity of our
whitelisting method is O(s), but s is small for most domains.

D. Encryption and Traffic Obfuscation

In MassBrowser all of the communication between Clients
and Buddies are encrypted in order to resist DPI attacks de-
ployed by the censors. A matched pair of Client-Buddy encrypt
their messages using a symmetric cipher with a shared secret
key that they share through the Operator. Our implementation
currently uses AES 256 for Client-to-Buddy encryption.

We also implement traffic obfuscation to protect Mass-
Browser’s traffic against traffic analysis attacks [31], [24], [76].
Particularly, we have built a custom implementation of the
obfsproxy [53] Tor pluggable transport tailored to work with
our MassBrowser implementation. The obfuscation algorithm
removes identifiable traffic patterns, making the Client-Buddy
protocol look like benign peer-to-peer traffic, e.g., p2p gaming
or file sharing traffic.

E. Communication Sessions in MassBrowser

We define a MassBrowser session to be a connection
between a Client and a Buddy. Upon receiving a request from
the browser, the Client checks whether the request can be
handled with any of the currently active sessions the Client
has, i.e., whether any of the connected Buddies will accept
the request in their whitelisted categories. If no such session
is found, the Client will need to ask the Operator to assign it a
new session with a suitable Buddy that will accept the request.
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The Operator will select a Buddy to assign to the Client
and will notify both parties to establish a new session. Each
session has the following attributes:

1) Allowed content types: This is the list of content types
that the Client is allowed to obtain through this session.

2) Shared Keys and Cipher Suite: All communications be-
tween the Client and Buddy are encrypted with a shared
key and cipher suite shared through the Operator.

3) Obfuscation method: In order to prevent fingerprinting
attacks on the Client-Buddy communication protocol, the
Operator may instruct the users to use one of the available
obfuscation algorithms if the censoring region is known
to deploy DPI attacks.

4) Connection initiator: Based on NAT type of the peers,
the Operator will instruct one of the users to initiate
the connection with the other using an appropriate NAT
traversal technique, as described earlier.

5) Expiration time: Each session is only valid within a
defined time period. The Client will have to ask to renew
the session if he wishes to continue using it beyond the
expiration time. This is to perform load balancing on
Buddies over time.

The Operator will send the details of each new session
to the corresponding Client and Buddy. The party who has
been selected as the connection initiator will then attempt
to establish a connection with the other party. The receiving
party will keep the session in a list of pending sessions until
either the connection is established or the session expires. Each
session can only be used once, and both parties will notify the
Operator once the session connection has been established.

Timeline of events: Figures 6, 7, and 8 depict the timelines of
communications between Buddies, Clients, and the Operator.
As shown in Figure 6, when a Buddy starts, it sends a request
to a STUN server to get its remote port and IP address. Then,
Buddy updates the Operator with its new IP address and port
number. Next, the Operator checks if the Buddy is reachable
(either using TCP or UDP). The Buddy regularly repeats these
steps to make sure that the Operator is up to date. Therefore,
the Operator keeps track of all of Buddies and their reachability
status.

Figure 7 illustrates the procedure for requesting a new
session by a Client through the Operator. Each Client pre-
emptively requests for sessions to reduce the overall waiting
times for session creation.

Finally, Figure 8 summarizes the overall timeline of com-
munications between MassBrowser parties. When an applica-
tion (e.g., a browser) sends a new request to MassBrowser, the
client will check if it has a session for that request (assuming
the request is for a censored content), and if so, the Client
starts using that specific session for the request. If not, the
Client will requests a new session for that specific content.

VI. PERFORMANCE EVALUATION

A. System Performance

We evaluated the performance of MassBrowser’s different
phases of operation. We used our own MassBrowser clients for
the measurement due to ethical reasons. Also, as mentioned
earlier, while the Operator uses domain fronting, it can be

Operator Buddy STUN Server

What is my NAT port? 

NAT Port

Nat Port

Update Buddy Information

Check Reachbility

Update Buddy Information

loop

Fig. 6. Each Buddy sends status updates to the Operator to keep it updated on
the Buddy’s connectivity. The Buddy regularly contacts some STUN servers
to check if it is behind NAT and to obtain its public ports. Then, it will send its
public port information to the Operator. Also, the Operator regularly checks
the reachability of each of the Buddies using their public port numbers.

Client Operator Buddy STUN Server

Request new Buddy

Assign a Buddy

 Request Session 

Accept Session

Session Data

Session Data

Initiate Connection

ACK

Session Connected

Encrypted Data

Encrypted Response

expandable+

Status Update (Fig. 6)

Fig. 7. Session creation procedure by a Client. When a Client decides to
create a new session for a requested object, it will contact the Operator to
ask for a Buddy that supports the requested object. The Operator assigns
a Buddy using its relay assignment mechanism in Section V-B (e.g., based
on the preferences of Buddies). Next, the Operator contacts the Buddy and
requests a new session, which the Buddy can reject or accept the new session.
If the selected Buddy rejects the session (e.g., is unreachable), the Operator
will assign another Buddy. Once a Buddy accepts the session, the Operator
will create a “session data” token that includes the cryptographic keys and
protocol specifications for that session; the session data token is sent to the
corresponding Client and Buddy. Finally, the Client initiates a connection to
the assigned Buddy using the information in the session data token.
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Fig. 8. A typical MassBrowser communication session between a Client and a Buddy. Upon receiving an object request (from a web browser in this example),
the Client will check against the content whitelist (Section V-C) to decide how to handle that object. If the requested object is MassBrowsable (as defined in
Section V-C), the Client will check if there already exists a session that can be used to fetch that object, otherwise she will request the Operator for a new
session (Figure 7). (“alt” refers to the different alternatives)

deployed using any high-latency boostrapping mechanism. To
demonstrate that, we artificially increase the latency of the
Operator’s responses in our performance measurement.

Software Boot Up: Whenever a user starts the Client, it
connects to the Operator to get the latest whitelisting rules
and updates. We ran 100 Clients and measured the average
boot up time. The average boot up latency for the very first
run of Client is about 20 seconds (with a standard deviation 5
seconds), while future boot ups takes an average of 4 seconds
(with a standard deviation of 0.5 second). To demonstrate
the possibility of deploying the Operator using high-latency
channels (e.g., SWEET [35]), we artificially increased the
response time of the Operator to 5 minutes. And expected,
this slowed down the client’s start up accordingly. However, it
did not break nor interfered with the operation of the Client
software.

Session Creation: A key phase of MassBrowser’s operation
is the session creation process. Each Client will preemptively
create a general session, but whenever the client software

receives a connection to a destination not supported by the
existing session, the client will create a new session. In our
measurements, each session creation takes about 0.7 second
on average (with a standard deviation of 0.07 second). To
demonstrate the possibility of using a high-latency channel for
session creation, we artificially increased the response time of
Operator to 1 minute. Even with such a large latency, Client
is able to create sessions without breaking down.

Data Communication: MassBrowser uses a custom protocol
over TCP/UDP for the communications between Clients and
Buddies. We measure the throughput of this protocol using our
own Client and Buddy machines, connected through a 1Gbps
network: the throughput is 30MB/s over TCP and 10MB/s over
UDP.

Operator’s Capacity: Our current implementation of Op-
erator is deployed on AWS using a ’t2.large’ instance and
a ’t2.medium’ instance. We used the Apache HTTP server
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benchmarking tool4 to evaluate our current (light-weight)
deployment of Operator against 1,000,000 clients (100 con-
current clients), showing an average response time of 400ms
without any failed connections.

B. Buddy Bandwidth Contribution

Our analysis of the top 1000 Alexa website homepages [2]
finds the average size of each webpage to be 2.4 MB. We found
41% of the generated traffic by these pages to be CacheBrows-
able, which is very promising for MassBrowser regarding load
optimization (note that most of the CacheBrowsable webpages
are partially CacheBrowsable [85], therefore MassBrowser
needs to proxy only the non- CacheBrowsable components).
Therefore, in order to load a typical page through MassBrowser
the client will only need to proxy an estimated 1.4 MB through
the Buddies. The Akamai State of the Internet Connectivity
Report [1] estimates the Internet bandwidth of an average
user living in the United States in 2017 to be 18.7 Mbps.
Assuming volunteers will provide MassBrowser with 25% of
their unused bandwidth, an average Buddy in the United States
will contribute 4.7 Mbps when not using the Internet, which
translates into a page load every 2.5 seconds. Also, recall that
in MassBrowser, the bandwidth of Buddies is solely used for
loading censored content.

C. Costs of Operation

Ensuring low operational cost is one of the primary design
goals of MassBrowser. The (bulky) circumvention traffic of
MassBrowser clients is handled by volunteer Buddies. There-
fore, the only operational cost of MassBrowser is imposed
by running the Operator. Recall that the Operator is deployed
as a domain fronted service, i.e., hosted on a CDN, in order
to allow unblockable access to the censored users. In this
section, we show that while domain fronting is known to be
prohibitively expensive for proxying [46], it imposes little costs
on MassBrowser as it is only used for its control traffic.

There are three factors that contribute to the Operator’s
operational costs:

1) Number of Client-Requested Sessions Per Day: Each
session established between a Client and a Buddy is capable
of serving any volume of traffic to different destinations as
long as they satisfy the content type restrictions imposed by the
Buddy. Therefore, it is unlikely that a Client will require more
than a few active sessions at any given time. Our evaluation
of a typical Client shows that 20 sessions per day is sufficient
for typical web browsing.

2) Size of Session Objects: Upon creation of a new session
between a Client and a Buddy, the Operator will need to
exchange some protocol messages to the two parties. The
exchanged information is composed of a 500 byte fixed-
size segment containing details about the IP addresses, ports,
NAT types, connection initiator, secret key, and the session
expiration date, along with a variable-size segment listing the
content types that will be accepted on the session (each content
type takes 12 bytes). Therefore, the overall traffic load on
Operator for each session is ≈ 1000 bytes.

4https://httpd.apache.org/docs/2.4/programs/ab.html

3) Size of the Webpage Database: The Operator maintains
a database containing information on how to browse different
censored websites supported by the Buddies. While the number
of such unique domains for every website could be high, the
database stores the domains in regex format, combining groups
of similar domains with identical censorship information into
single entries. The majority of the websites have at most 50
entries in Operator’s database; given that each entry is around
1KB, each website will use at most 50KB in the database.

Based on these factors, we estimate Operator’s operational
costs, which is hosted over the Amazon AWS.

Cost of Running the Operator Servers: We estimated every
user to request 20 sessions per day. For 10M users this
requires 200M requests which would amount to an average of
2000 requests per second. Four AWS EC2 a1.metal instances,
costing at about $0.408 an hour (at the time of writing), will
be sufficient for handling this load of requests generated by
10,000,000 users. The monthly cost will amount to $0.00011
per user.

Cost of Deploying on CDNs: We have hosted the Operator
on the Amazon Cloudfront CDN. Amazon Cloudfront charges
based on the volume of traffic, and the locations of the CDN
edge servers used. Note that Operator’s communications with
Clients are not latency sensitive; therefore, it suffices for the
Operator to use a cheap CDN service (we use a service with
$0.01 per GB). As estimated above, each user will request 600
sessions per month, for which the Operator will need to send
600 KB of control data to the Clients; this costs $0.00006
per user each month. The user will also need to synchronize
her local database with Operator, resulting in a one-time 50
KB data transfer for each supported website, which costs
$0.0000005 per user for every website.

Comparing costs with meek: Meek [45] is a Tor pluggable
transport that relays Tor traffic through domain fronted proxies
to evade censorship. In order to operate, meek must proxy all
of the users’ traffic through CDN servers. As a result, unlike
MassBrowser the costs of operating meek is proportional to
the client’s bandwidth usage. As we saw in the previous
analysis, we estimate the cost for a MassBrowser user with
600 sessions per month to be $0.00006 each month using
Amazon Cloudfront CDN, regardless of the types of the
websites browsed (e.g., video streaming, news, etc.). If we
assume each session to be just for one website load and each
website to have an average of 2.4 MB (as we measured), then
the same client using meek over Amazon Cloudfront CDN
will cost 600 ∗ 0.0024 ∗ 0.01 = $0.014, which is over 200
times the cost of the user on MassBrowser. Note that in real
life each session will be used to browse multiple websites and
may require higher traffic (e.g., for video streaming), therefore,
the cost gap will be even greater in favor of MassBrowser.

D. MassBrowser as a Tor Transport

As mentioned before, MassBrowser can be used as a Tor
pluggable transport, i.e., a Client who needs anonymity can
connect to a Buddy who whitelists Tor traffic. We measured the
time to load the top 100 Alexa websites with Tor, using Mass-
Browser as a bridge for Tor, and using MassBrowser without
Tor (experiments were performed from the same vanatge points
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TABLE IV. AVERAGE PAGE LOAD LATENCIES FOR DIFFERENT
WEBSITE OVER TOR, MASSBROWSER AS A TOR BRIDGE, AND

MASSBROWSER ALONE.

Website Tor (s) MassBrowser
+ Tor (s)

MassBrowser
(s)

Google.com 19.6 20.3 2.6
Youtube.com 27.3 25.6 6.3

Facebook.com 27.4 30.4 6.6
Baidu.com 7.5 10.1 1.7

Wikipedia.com 29.5 22.3 1.1

in Iran). We browsed each website 50 times over each setting
and computed the average time to load the websites. Table IV
presents the load times for different websites. On average
loading each website on Tor takes more than 16 seconds longer
than using MassBrowser. Using MassBrowser as a Tor bridge
does not significantly change the load times compared to using
Tor with no pluggable transport; therefore, MassBrowser’s
added latency on Tor is negligible, making MassBrowser a
suitable plug for Tor bridges.

E. Effect of Churn

We expect MassBrowser to be resistant to Buddy churn.
This is because each Buddy runs a stand-alone software
application (as opposed to web sessions in systems like
FlashProxy [19]), and therefore the churn times are in the
order of several hours5 (e.g., when the users restart) rather
than minutes. Since the primary use of MassBrowser is web
browsing, such long churn times will have little impact on
short-lived HTTP/HTTPS sessions.

VII. DISCUSSION OF SECURITY AND PRIVACY
GUARANTEES

In this section, we discuss the privacy guarantees of Mass-
Browser’s components.

A. Client Privacy

A. Privacy against Buddies A MassBrowser Buddy imposes
the same privacy threats to its Clients as a network observer,
e.g., an ISP, on regular Internet users.

Anonymity against Buddies: As discussed earlier, providing
client anonymity is not a design goal for MassBrowser based
on the SoP principle. Therefore, a Buddy can learn the
destinations being accessed by her connected Clients —this
is similar to how a typical network observer (like an ISP or
a transit AS) can learn browsing patterns of typical Internet
users. Note that, like a normal Internet user, a MassBrowser
client needing anonymity can use an anonymity system like
Tor—through MassBrowser —(i.e., by connecting to Buddies
that support Tor).

Confidentiality from Buddies: A Buddy will not be able to see
its Clients’ communication content for HTTPS destinations,
which includes the majority of services hosting sensitive user
data like social networking websites and search engines. A
Buddy, however, will be able to see a Client’s communication
content to an HTTP destination, similar to how an ISP observes

5https://www.statista.com/statistics/736727/
worldwide-teen-average-online-time-devices/

the HTTP traffic of its users. A MassBrowser Client can opt
to use MassBrowser for HTTPS websites.

Surveillance by censor-run Buddies: A powerful organization
that runs numerous Buddies for user surveillance is not dif-
ferent than a nation state or ISP wiretapping through Internet
routers. Real-world observations over the years have shown
that censoring governments tend to not penalize their users for
the sole act of circumventing censorship. The risk is much
less for MassBrowser Clients as, by design, MassBrowser
Buddies do not allow connection to controversial websites with
potential legal consequences (for such websites, the clients will
need to use Tor through MassBrowser).

Identification by censors who know Buddies: The Buddies
obtained by a censoring client from Operator can not be used to
learn any information about the Clients who use these Buddies.
This is because different Clients connecting to the same Buddy
will make connections through different IP address and port
combinations due to NAT.

B. Privacy against Operator Unlike traditional circumven-
tion tools like Psiphon, Anonymizer, and Lantern, in Mass-
Browser the Operator of the circumvention system is separate
from the proxying parties. Therefore, the Operator is not able
to observe Client traffic. The Operator can only learn the
categories of content a Client is willing to access.

B. Buddy Privacy

Privacy against Clients A Client using a Buddy will only
learn the (ephemeral) NATed IP address of that Buddy, but no
other information. As Client-Buddy assignments are performed
by the Operator, a Client can not choose the Buddy to connect.

Privacy against Operator The Operator will have access to a
Buddy’s preferences such as her whitelisted content types and
specified bandwidth limits. A Buddy’s IP address will also be
exposed to the Operator, however similar to the Clients, this
is the NAT IP address of the Buddy, which is also visible to
any other web service the Buddy connects to on the Internet.

C. Security and Reliability

Outright blocking of large IP domains If the censors are
willing to disrupt unknown network protocols, they can block
all suspected/unknown IP addresses, which will significantly
impact the operation of any proxy-based circumvention system
like MassBrowser.

Taking over the Operator Like other centralized circum-
vention systems, if the censors are able to take control of the
Operator, the will be able to shut it down and learn the IP
addresses of the active Clients and Buddies.

Blocking the Operator’s IP In MassBrowser, the Operator
has the same protection against IP blocking as domain fronting
systems. That is, being run on public CDNs, the censors will
have to block a whole CDN in order to block the Operator.

Blocking the Buddies’ IP The IP enumeration techniques that
censors practice against traditional circumvention systems like
Tor [81], [16] will not work against MassBrowser Buddies.
This is because the censors can only obtain the NAT IPs of
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the Buddies; blacklisting such IPs will have similar collateral
damage as blocking domain fronting systems.

Traffic fingerprinting All MassBrowser communications
between Clients and Buddies are obfuscated (and encrypted)
using a tailored variant of obfsproxy [53] to prevent known
traffic fingerprinting attacks [31], [24], [76]. The key difference
of our tailored protocol with obfsproxy is that we omit the
handshaking process of obfsproxy, since the Operator com-
municates the information needed to bootstrap the sessions
(through the session data tokens in Figure 7) to the Clients
and Buddies. Removing the handshaking process improves
resilience to known fingerprinting attacks on obfsproxy [76].
All Client traffic to the Operator is protected with domain
fronting.

DoS attacks through censor Sybils As discussed in Sec-
tion IV-A, a censor who obtains a Buddy from the Operator can
not block that Buddy, nor can he identify the Buddy’s clients.
However, a resourceful censor may overload the obtained
Buddies to consume their available circumvention capacities.
Note that such an attack is not a strong DoS attack, as the load
on the attacker and victim is symmetric (asymmetry is the key
property of real-world DoS attacks). Nonetheless, our Operator
deploys standard Sybil protection mechanisms as explained
earlier.

TLS interception by the censors If the censors are able to
intercept the TLS communications, all circumvention systems
including MassBrowser will be insecure.

Compromising a Client’s local certificate As described
before, each Client will use a locally created certificate to inter-
cept and optimize MassBrowser connections. If an adversary
is able to somehow obtain the private key of this certificate
for a specific Client (e.g., through installing a malware on the
target device), he will be able to intercept all connections or
disrupt communications of that specific Client.

Faulty Buddies A large number of faulty/misbehaving Bud-
dies will negatively impact the usability of MassBrowser to
the clients. A Buddy can be faulty due to various reasons such
as changes in firewall filters or NAT mappings that are not yet
synced with the Operator, poor network connectivity, or being
owned by malicious parties. To prevent this, our measurement
backend periodically establishes connections through the Bud-
dies to assess their reachability and remove faulty Buddies
from the system.

VIII. CONCLUSIONS

In this paper, we presented the design and deployment
of the MassBrowser censorship circumvention system. Mass-
Browser is a volunteer-run circumvention system, and its
goal is to provide effective censorship circumvention to a
large mass of censored users, with a high quality of service
(QoS), low cost of operation, and adjustable privacy protec-
tion. Towards this, MassBrowser separates circumvention from
privacy protection, allowing it to optimize the system around
circumvention. MassBrowser has been deployed as a fully
operational system with end-user GUI software for major op-
erating systems, and it is currently available to early-adopters
through invitations. The code and software are available online
https://massbrowser.cs.umass.edu/.
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APPENDIX

A. MassBrowser’s Implementation Details

We have fully implemented MassBrowser as an end-user
software, and it is currently in the beta release state with
early-adopters from around the world evaluating it. Joining
our system is currently invitation-based only, and we expect
to open the project to the public soon (pending code review
by a third-party organization). Our current implementation of
MassBrowser supports Mac, Windows, and Linux operating
systems. We have hosted an anonymized version of our code
at https://massbrowser.cs.umass.edu. In the following we give
details of our system implementation.

1) The Operator server: MassBrowser’s Operator is a suite
of backend services that runs various services essential to the
reliable operation of MassBrowser, including strategic pairing
of clients and proxies, monitoring the reachability and health
of various parts of the system, and measuring the performance
of MassBrowser in censored countries. We only use our own
clients to perform our measurements. We have coded the
Operator mostly in Python with the Django web framework
[17] (approximately 10K lines of code). We have hosted our
Operator server on Amazon CloudFront CDN [13], therefore it
is a domain-fronted service and can not be blocked. Our Oper-
ator’s API is accessible through both standard HTTP requests
and WebSockets, though we refrain from using WebSocket
connections for Clients in order to prevent introducing protocol
fingerprints.

As previously mentioned, the Operator maintains a
database of supported websites along with per-region censor-
ship and CacheBrowsing information for all domains in the
websites. To do so, the Operator has a probing component that
regularly crawls the supported websites to identify domains
and update its information.

Also, we have taken various measures to ensure the scal-
ability and reliability of our backend services. In particular,
we run multiple redundant servers for each component of

Operator, and our 24/7 health monitoring system makes regular
assessment of the status of system services, and sends email
notifications in case of issues.

Finally, we have implemented a management console (with
a snapshot in Figure 9) allowing us to manually monitor and
configure different components of the system.

2) Buddy Software: We have coded our Buddy software in
Javascript ES6 using NodeJS with a graphical user interface
developed with the Electron framework [18] (approximately
50K lines of code). In addition to the GUI interface, our Buddy
software is also available as a command-line application for
expert volunteers. The Buddy actively maintains a WebSocket
connection to the Operator, and will be notified of newly
created sessions on this channel.

The Buddy software allows volunteers to have full trans-
parency and control over their desired settings including band-
width limits, destination whitelists and Client blacklists (Fig-
ure 5 displays a snapshot of a Buddy volunteer configuring her
destination whitelists through the GUI). The Buddy software
runs with minimal interference from the user. It is able to run
in the background while providing an easily accessible switch
for disabling the Buddy’s activities on the users demand.

3) Client Software: We have implemented our Client soft-
ware with NodeJS with an Electron based GUI (approximately
50K lines of code). A client application, e.g., a web browser,
can connect to the Client software via a SOCKS proxy. On
the first run, the Client software will walk the user through
a setup wizard which will assist them in configuring their
preferred browsers to use MassBrowser. The current imple-
mentation of Client software provides a setup wizard walking a
client through connecting her web browser with MassBrowser.
Figure 10 displays our Client setup wizard. The MassBrowser
Client software requires to see each individual request, even
when encrypted with TLS. In the normal case, the proxied
TLS requests would not be visible to the Client software
since it does not own the website certificates. To enable the
interception of TLS connection by Client, the setup wizard
adds a locally created root certificate to the client’s browser
during the initial setup. Note that the root certificate does
not leave the client’s computer, and therefore the client is
secure as long as she does not share the certificate with
others (Figure 10 shows how the user is informed during
the setup). Client uses this certificate to “locally” man-in-
the-middle MassBrowser’s TLS connections to perform load

Fig. 9. Our management console
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Fig. 10. The Client setup wizard to connect client’s web browser to
MassBrowser’s client software.

Fig. 11. The Client browser bundle comes with a pre-configured Firefox
browser, which is ready to use out of the box.

optimizations like CacheBrowsing.

In addition to the client setup wizard, we have implemented
a client browser bundle for clients. The bundle comes with a
preconfigured, customized Firefox browser, and is ready to
use out of the box. Figure 11 shows a snapshot of the browser
bundle.
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