Networking Lab Class #3

V. Arun Spring 2015 UMass Amherst

(slides adapted from E. Rosenweig)

This Class

Review of Lab 2

- Review of Question 7
- Preparing for Lab 3

Lab 2: Questions? Comments?

This Class

- Review of Lab 2
- Review of Question 7
- Preparing for Lab 3

Exercise 7: Topology & Addresses

TABLE 2.4. IP addresses for Part 7.		
Linux PC	IP Address of Ethernet Interface <i>eth0</i>	Network Mask
PC1	10.0.1.100/24	255.255.255.0
PC2	10.0.1.101/28	255.255.255.240
PC3	10.0.1.120/24	255.255.255.0
PC4	10.0.1.121/28	255.255.255.240

Address ranges

PC1:

- □ 10.0.1.100/24, in network 10.0.1.0/24 (mask 255.255.255.0)
- □ Lowest/Highest IP addresses: 10.0.1.1/24 to 10.0.1.254/24
- PC2:
 - □ 10.0.1.101/28, in network 10.0.1.96/28 (mask 255.255.255.240)
 - □ Lowest/Highest IP addresses: 10.0.1.97/28 to 10.0.1.110/28.

PC3:

- □ 10.0.1.120/24, in network 10.0.1.0/24 (mask 255.255.255.0)
- □ Lowest/Highest IP addresses: 10.0.1.1/24 to 10.0.1.254/24 (same as PC1).

PC4:

- 10.0.1.121/28, in network 10.0.1.112/28 (mask 255.255.255.240)
- □ Lowest/Highest IP addresses: 10.0.1.113/28 to 10.0.1.126/28

Logical View of the Network

Conditions for a successful ping

- 1. Is the destination reachable?
 □ If not in the current subnet, is a gateway defined?
- Is destination MAC address known?
 If not cached, use "arp" to resolve
- 3. Use ICMP to ping the destination
- Depending which of the above steps fails, you get a different message.
- Addressability (IP) should be bidirectional.

Exercise 7 results

- a) (PC1 \rightarrow PC3) Works.
- b) (PC1 \rightarrow PC2) Works.
- c) (PC1 \rightarrow PC4) Does not work!
 - "arp" successful, but PC4 cannot reach PC1!
 - Review Wireshark data

Exercise 7 results

- d) (PC4 \rightarrow PC1) Does not work!
 - a) "Network is unreachable" error in PC4. No "arp" initiated
- e) (PC2->PC4) Does not work!
 - a) "Network is unreachable" error in PC2. No "arp" initiated
- f) (PC2->PC3) Does not work!
 - e) "Network is unreachable" error in PC2. No "arp" initiated

This Class

- Review of Lab 2
- Review of Question 7

Preparing for Lab 3

Lab 3 - Prep.

In this lab, you will
 Configure a router
 Configure a Linux PC to use as a router
 Proxy ARP, redirects...
 Setup static routes

Configuring Routers

- PC_x used to configure Router_x
 Type *kermit* in the console to start session
 Username and password same as PCs
 But not all routers will request it
 Use "?" for possible-command completion
 Tab as usual
- Follow book step-by-step instructions for setup

Configuring Linux PC as Router

Simple command

 echo ``1" > /proc/sys/net/ipv4/ip_forward

 Sets PC so it forwards packets
 Lab 3 - static routing tables

route command

Lab 3 - Tip 1

Prepare your own script files for setup

- Lab will take a while. If you use the same configuration for large parts, script files will save time next time you have a slot.
- Router setup scripts?
 - □ Pretty handy once you learn it.
 - See a <u>short description</u> on the class Web site
 - Under "Lab 3" in "Lab Tips & FAQ"

Lab 3 - Tip 2

Test each link right after you build it
 Networks will start to be big and take time to construct

- Don't work for hour and then start debugging
 - Debug as you go!

Lab 3 – Tip 3

- Router debugging
 - □ show ip route
 - show interfaces
 - □ show ip interface brief
 - □ show running-config
- Try to really understand router config
 Very useful in coming Labs
 Critical for debugging

show ip route - sample

Router# show ip route

Codes: I - IGRP derived, R - RIP derived, O
 - OSPF derived, C - connected, S - static,
 B - BGP derived...

C 10.119.254.0 255.255.255.0 is possibly down, routing via 0.0.0.0, eth0

O E2 10.110.0.0 [160/5] via 10.119.254.6, 0:01:00, eth1

Scripting Router Configuration

- Prepare a script file with extension "ksc" and mode "rwxr-xr-x" (use chmod 0755 <fn>.ksc)
 - □ Example follows
- Start kermit

kermit

- set line /dev/ttys0
- set carrier-watch off

Call the script file

take <script-file.ksc>

Connect to router (in kermit)

connect

```
An example of router script
output \13
input 10 >
lineout enable
input 10 #
lineout configure terminal
input 10 (config)#
lineout interface fastEthernet 0/0
input 10 (config-if)#
lineout ip address 10.0.1.11 255.255.255.0
input 10 (config-if)#
lineout shutdown
input 10 (config-if)#
lineout no shutdown
input 10 (config-if)#
lineout int fa0/1
input 10 (config-if)#
lineout ip add 10.0.2.11 255.255.255.0
input 10 (config-if)#
lineout shut
input 10 (config-if)#
lineout no shut
input 10 (config-if)#
lineout end
input 10 #
lineout disable
input 10 >
lineout logout
```

Questions?

Enjoy Lab 3!