## LAN switching and Bridges

## CS49IG: Computer Networking Lab <br> V.Arun

## Outline

- Interconnection devices
- Bridges/LAN switches vs. Routers
- Learning Bridges
- Transparent bridges


## Introduction

- Several different devices for interconnecting networks



## Ethernet Hub

- Connects hosts to Ethernet LAN and connects multiple Ethernet LANs
- Collisions are propagated



## Bridges/LAN switches

- A bridge or LAN switch is a device that interconnects two or more Local Area Networks (LANs) and forwards packets between these networks.
- Bridges/LAN switches operate at the Data Link Layer (Layer 2)



## Terminology: Bridge, LAN switch, Ethernet switch

There are different terms to refer to a data-link layer interconnection device:

- The term bridge was coined in the early 1980s.
- Today, the terms LAN switch or (in the context of Ethernet) Ethernet switch are used.

Convention:

- We will use the three terms interchangeably.


## Ethernet Hubs vs. Ethernet Switches

- An Ethernet switch is a packet switch for Ethernet frames
- Buffering of frames prevents collisions.
- Each port is isolated and builds its own collision domain
- An Ethernet Hub does not perform buffering:
- Collisions occur if two frames arrive at the same time.


Switch


## Dual Speed Ethernet hub

- Dual-speed hubs operate at 10 Mbps and 100 Mbps per second
- Conceptually these hubs operate like two Ethernet hubs separated by a bridge



## Dual-Speed <br> Ethernet Hub

## Routers

- Routers operate at the Network Layer (Layer 3)
- Interconnect IP networks



## Gateways

- The term "Gateway" is used with different meanings in different contexts
- "Gateway" is a generic term for routers (Level 3)
- "Gateway" is also used for a device that interconnects different Layer 3 networks and which performs translation of protocols ("Multi-protocol router")



## Bridges versus Routers

- An enterprise network (e.g., university) with a large number of local area networks (LANs) can use routers or bridges
- 1980s: LANs interconnection via bridges
- Late 1980s and early 1990s: increasingly use of routers
- Since mid1990s: LAN switches replace most routers
- Late 2000s: Switches and SDN



## A Routed Enterprise Network



## A Switched Enterprise Network



## Interconnecting networks: Bridges versus Routers

## Routers

- Each host's IP address must be configured
- If network is reconfigured, IP addresses may need to be reassigned
- Routing done via RIP or OSPF
- Each router manipulates packet header (e.g., reduces TTL field)


## Bridges/LAN switches

- MAC addresses of hosts are hardwired
- No network configuration needed
- Routing done by
- learning bridge algorithm
- spanning tree algorithm
- Bridges do not manipulate frames


## Bridges

Overall design goal: Complete transparency
"Plug-and-play"
Self-configuring without hardware or software changes Bridges should not impact operation of existing LANs

Three parts to understanding bridges:
(1) Forwarding of Frames
(2) Learning of Addresses
(3) Spanning Tree Algorithm

## (1) Frame Forwarding

- Each bridge maintains a MAC forwarding table
- Forwarding table plays the same role as the routing table of an IP router
- Entries have the form ( MAC address, port, age), where

$$
\begin{array}{ll}
\text { MAC address: } & \text { host name or group address } \\
\text { port: } & \text { port number of bridge } \\
\text { age: } & \text { aging time of entry (in seconds) }
\end{array}
$$

with interpretation:
a machine with MAC address lies in direction of the port number from the bridge. The entry is age time units old.

MAC forwarding table

| MAC address | port | age |
| :--- | :--- | :---: |
| a0:e1:34:82:ca:34 | 1 | 10 |
| $45: 6 \mathrm{~d}: 20: 23: \mathrm{fe}: 2 \mathrm{e}$ | 2 | 20 |
|  |  |  |

## (1) Frame Forwarding

- Assume a MAC frame arrives on port x.



## (2) Address Learning (Learning Bridges)

- Routing entries set automatically with a simple heuristic:

Source field of a frame that arrives on a port tells which hosts are reachable from this port.


## (2) Address Learning (Learning Bridges)

Learning Algorithm:

- For each frame received, the source stores the source field in the forwarding database together with the port where the frame was received.
- All entries are deleted after some time (default is 15 seconds).



## Example

-Consider the following packets: (Src=A, Dest=F), (Src=C, Dest=A), (Src=E, Dest=C)
-What have the bridges learned?


## Need for a forwarding between networks

- What do bridges do if some LANs are reachable only in multiple hops ?
- What do bridges do if the path between two LANs is not unique ?



## Problems with network of bridges

- Consider the two LANs that are connected by two bridges.
- Assume host $n$ is transmitting a frame $F$ with unknown destination.


## What is happening?

- Bridges A and B flood the frame to LAN 2.
- Bridge B sees F on LAN 2 (with unknown destination), and copies the frame back to LAN 1
- Bridge A does the same.
- Duplication causes "broadcast storm" Where's the problem? What's the solution?



## Transparent Bridges

- Three principal approaches can be found:
- Fixed Routing
- Source Routing
- Spanning Tree Routing (IEEE 802.1d)
- We only discuss the last one
- Bridges that execute the spanning tree algorithm are called transparent bridges


## Spanning Tree Protocol (IEEE 802.1d)

- Spanning Tree Protocol (SPT) is a solution to prevent loops when forwarding frames between LANs
- Standardized as IEEE 802.1d
- SPT organizes bridges and LANs as spanning tree in a dynamic environment
- Frames are forwarded only along the branches of the spanning tree
- Trees don't have loops
- Bridges exchange messages to configure the bridge (Bridge Protocol Data Unit or BPDUs) to build tree.



## Configuration BPDUs



## What do the BPDUs do?

With the help of the BPDUs, bridges can:

- Elect a single bridge as the root bridge.
- Calculate the distance of the shortest path to the root bridge
- Each LAN can determine a designated bridge, which is the bridge closest to the root. The designated bridge will forward packets towards the root bridge.
- Each bridge can determine a root port, the port that gives the best path to the root.
- Select ports to be included in the spanning tree.


## Concepts

- Each bridge as a unique identifier: Bridge ID

```
Bridge ID = Priority: 2 bytes
        Bridge MAC address: 6 bytes
```

- Priority is configured
- Bridge MAC address is lowest MAC addresses of all ports
- Each port of a bridge has a unique identifier (port ID).
- Root Bridge: The bridge with the lowest identifier is the root of the spanning tree.
- Root Port: Each bridge has a root port which identifies the next hop from a bridge to the root.


## Concepts

- Root Path Cost: For each bridge, the cost of the min-cost path to the root.
- Designated Bridge, Designated Port: Single bridge on a LAN that provides the minimal cost path to the root for this LAN:
- if two bridges have the same cost, select one with highest priority
- if min-cost bridge has two or more ports on the LAN, select port with lowest ID
- Note: We assume that "cost" of a path is the number of "hops".


## Steps of Spanning Tree Algorithm

- Each bridge is sending out BPDUs that contain the following information:

root bridge (what the sender thinks it is) root path cost for sending bridge Identifies sending bridge | root ID | cost | bridge ID | port ID |
| :--- | :---: | :---: | :---: | Identifies the sending port

- Transmission of BPDUs results in the distributed computation of a spanning tree
- Convergence of the algorithm is very quick


## Ordering of Messages

- We define an ordering of BPDU messages


M1

\section*{| ID R2 | C2 | ID B2 | ID P2 |
| :--- | :--- | :--- | :--- |}

M2

We say M1 advertises a better path than M2 ("M1<<M2") if (R1 < R2),

Or (R1 == R2) and (C1 < C2),
Or (R1 == R2) and (C1 == C2) and (B1 < B2),
Or (R1 == R2) and (C1 == C2) and (B1 == B2) and (P1 < P2)

## Initializing the Spanning Tree Protocol

- Initially, all bridges assume they are the root bridge.
- Each bridge B sends BPDUs of this form on its LANs from each port P:

- Each bridge looks at the BPDUs received on all its ports and its own transmitted BPDUs.
- Root bridge updated to the smallest received root ID that has been received so far


## Operations of Spanning Tree Protocol

- Each bridge $B$ looks on all its ports for BPDUs that are better than its own BPDUs
- Suppose a bridge with BPDU:

$$
\begin{array}{|l|l|l|l}
\hline \text { M1 } & \mathrm{R} 1 & \mathrm{C} 1 & \mathrm{~B} 1 \\
\mathrm{P} 1 \\
\hline
\end{array}
$$

receives a "better" BPDU:

$$
\begin{array}{l|l|l|l|l}
\hline \text { M2 } & \mathrm{R} 2 & \mathrm{C} 2 & \mathrm{~B} 2 & \mathrm{P} 2 \\
\hline
\end{array}
$$

Then it will update the BPDU to:

```
R2 C2+1 B1 P1 
```

- However, the new BPDU is not necessarily sent out
- On each bridge, the port where the "best BPDU" (via relation "<<") was received is the root port of the bridge.


## When to send a BPDU

- Say, B has generated a BPDU for each port x

- B will send this BPDU on port $x$ only if its BPDU is better (via relation "<<") than any BPDU that $B$ received from port $x$.
- In this case, B also assumes that it
 is the designated bridge for the LAN to which the port connects
- And port $x$ is the designated port of that LAN


## Selecting the Ports for the Spanning Tree

- Each bridges makes a local decision which of its ports are part of the spanning tree
- Now B can decide which ports are in the spanning tree:
- B's root port is part of the spanning tree
- All designated ports are part of the spanning tree
- All other ports are not part of the spanning tree
- B's ports that are in the spanning tree will forward packets (=forwarding state)
- B' s ports that are not in the spanning tree will not forward packets (=blocking state)


## Building the Spanning Tree

- Consider the network on the right.
- Assume that the bridges have calculated the designated ports ( D ) and the root ports ( R ) as indicated.
- What is the spanning tree?
- On each LAN, connect $R$ ports to the $D$ ports on this LAN



## Example

- Assume that all bridges send out their BPDU's once per second, and assume that all bridges send their BPDUs at the same time
- Assume that all bridges are turned on simultaneously at time $\mathrm{T}=0 \mathrm{sec}$.



## Example: BPDU's sent by the bridges

|  | Bridge 1 | Bridge 2 | Bridge 3 | Bridge 5 | Bridge 6 | Bridge 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}=0 \mathrm{sec}$ | (1,0,1, port) <br> sent on ports: $A, B$ | (2,0,2,port) <br> ports A,B | (3,0,3,port) <br> ports $A, B, C$ | (5,0,5,port) <br> ports A,B,C | (6,0,6,port) <br> ports A,B,C,D | (7,0,7,port) <br> ports A,B,C |
| $\mathrm{T}=1 \mathrm{sec}$ | $\begin{gathered} (1,0,1, \text { port }) \\ \text { A,B } \end{gathered}$ | $\begin{gathered} (2,0,2, \text { port }) \\ \text { A,B } \end{gathered}$ | $\begin{gathered} (1,1,3, p o r t) \\ \text { A,C } \end{gathered}$ | $\begin{gathered} (1,1,5, \text { port }) \\ B, C \end{gathered}$ | $\begin{gathered} \text { (1,1,6,port) } \\ \text { A,C,D } \end{gathered}$ | $\underset{\text { A }}{(1,1,7, \text { port })}$ |
| $\mathrm{T}=2 \mathrm{sec}$ | $\begin{gathered} (1,0,1, \text { port }) \\ \text { A,B } \end{gathered}$ | $\begin{gathered} \text { (1,2,2, port) } \\ \text { none } \end{gathered}$ | $\begin{gathered} (1,1,3, \text { port }) \\ \text { A,C } \end{gathered}$ | $\begin{gathered} (1,1,5, \text { port }) \\ B, C \end{gathered}$ | $\begin{gathered} (1,1,6, \text { port }) \\ D \end{gathered}$ | (1,1,7,port) <br> none |

- In the table ( $1,0,1$,port) means that the BPDU is $(1,0,1, A)$ if the BPDU is sent on port $A$ and $(1,0,1, B)$ if it is sent on port $B$.
-At T=1, Bridge 7 receives two BPDUs from Bridge 1: $(1,0,1, A)$ and $(1,0,1, B)$. We assume that $A$ is numerically smaller than $B$. If not, then the root port of Bridge 7 changes.


## Example: Settings after convergence

|  | Bridge <br> $\mathbf{1}$ | Bridge <br> $\mathbf{2}$ | Bridge <br> $\mathbf{3}$ | Bridge <br> $\mathbf{5}$ | Bridge <br> $\mathbf{6}$ | Bridge <br> $\mathbf{7}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Root Port | - | A | B | A | B | B |
| Designated Ports | $\mathrm{A}, \mathrm{B}$ | - | $\mathrm{A}, \mathrm{C}$ | $\mathrm{B}, \mathrm{C}$ | D | - |
| Blocked ports | - | B | - | - | $\mathrm{A}, \mathrm{C}$ | $\mathrm{A}, \mathrm{C}$ |

Resulting tree:


## VLANS

## VLANs: motivation


consider:

* CS user moves office to EE, but wants connect to CS switch?
* single broadcast domain:
- all layer-2 broadcast traffic (ARP, DHCP, unknown location of destination MAC address) must cross entire LAN
- security/privacy, efficiency issues


## VLANs

Virtual Local
Area Network
switch(es) supporting VLAN capabilities can be configured to define multiple virtual LANS over single physical LAN infrastructure.
port-based VLAN: switch ports grouped (by switch management software) so that single physical switch

... operates as multiple virtual switches


Electrical Engineering (VLAN ports 1-8)

Computer Science (VLAN ports 9-16)

## Port-based VLAN

* traffic isolation: frames to/from ports I-8 can only reach ports I-8
- can also define VLAN based on MAC addresses of endpoints, rather than switch port
* dynamic membership: ports can be dynamically assigned amongVLANs

* forwarding between VLANS: done via routing (just as with separate switches)
- in practice vendors sell combined switches plus routers


## VLANS spanning multiple switches



Electrical Engineering (VLAN ports 1-8)

Computer Science
(VLAN ports 9-15)


Ports 2,3,5 belong to EE VLAN
Ports 4,6,7,8 belong to CS VLAN

* trunk port: carries frames between VLANS defined over multiple physical switches
- frames forwarded within VLAN between switches can' t be vanilla 802.1 frames (must carry VLAN ID info)
- 802.Iq protocol adds/removed additional header fields for frames forwarded between trunk ports


### 802.1 Q VLAN frame format



Tag Control Information (12 bit VLAN ID field,
3 bit priority field like IP TOS)

