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Abstract—Traffic engineering (TE) has been long studied as a

network optimization problem, but its impact on user-perceived

application performance has received little attention. Our paper

takes a first step to address this disparity. Using real traffic

matrices and topologies from three ISPs, we conduct very large-

scale experiments simulating ISP traffic as an aggregate of a

large number of TCP flows. Our application-centric, empirical

approach yields two rather unexpected findings. First, link

utilization metrics, and MLU in particular, are poor predictors

of application performance. Despite significant differences in

MLU, all TE schemes and even a static shortest-path routing

scheme achieve nearly identical application performance. Second,

application adaptation in the form of location diversity, i.e., the

ability to download content from multiple potential locations,

significantly improves the capacity achieved by all schemes. Even

the ability to download from just 2–4 locations enables all TE

schemes to achieve near-optimal capacity, and even static routing

to be within 30% of optimal. Our findings call into question the

value of TE as practiced today, and compel us to significantly

rethink the TE problem in the light of application adaptation.

I. INTRODUCTION

Traditionally, traffic engineering (TE) has been studied as an
optimization problem that takes as input a traffic matrix (TM)
and seeks to compute routes so as to minimize a network
cost function. The cost function is intended to capture the
severity of congestion hotpsots based on link utilization levels.
For example, the most widely used cost function, MLU, is
simply the utilization of the most utilized link in the network
[42], [29], [46], [6]; others sum over all links a convex
function of their utilization (so as to penalize highly utilized
links more) [19], [20]. There are two implicit assumptions
underlying this line of work. First, maintaining low link
utilization improves user-perceived application performance
under typical load conditions. Second, maintaining low link
utilization increases the effective capacity of the network by
enabling it to accommodate unexpected surges in the traffic
demand.

Our work questions both of the above assumptions. The
distinguishing aspect of our work is an application-centric
approach to the problem: instead of posing TE as as optimiza-
tion problem seeking to minimize link utilization, we focus
on application performance metrics such as TCP throughput
for elastic traffic and quality-of-service metrics (e.g., MOS
score for VoIP quality [14]) for inelastic traffic. Accordingly,
our evaluation methodology is empirical: instead of relying
on mathematical simulations based on linear programming or
heuristic techniques for NP-complete problems, our experi-
ments carefully and at scale simulate end-to-end application
behavior so as to compare TE schemes with respect to their

impact on application performance.
Our application-centric and empirical approach reveals

rather unexpected results. Our first finding is that metrics based
on link utilization alone, and in particular MLU, are a poor
proxy for application performance. For example, a TE scheme
may incur twice the MLU of another TE scheme and yet
achieve as good or better application performance. The key
reason for this mismatch is that application performance is
largely determined by end-to-end loss rate and delay, but link
utilization does not capture them accurately. At typical Internet
loads, and in fact until the utilization starts approaching
the capacity, link loss rates remain negligibly small. This
observation has also been confirmed by explicit measurements
on Internet backbones [9], and is consistent with studies on
ISP backbones showing that over 90% of all packet loss is
caused by interdomain routing fluctuations as opposed to high
utilization [24] and 90% of TCP flows experience no packet
loss [21]. Furthermore, end-to-end Internet path delays are
known to be largely determined by propagation delays as
opposed to queueing delays [21], [34].

As a result, we find that all state-of-the-art TE schemes
achieve nearly identical application performance at typical In-
ternet load levels. In fact, even static shortest-path routing with
link weights inversely proportional to the capacity (InvCap)
(i.e., no engineering at all) achieves the same application per-
formance as optimal TE. Ironically, TE schemes that engineer
for unexpected traffic spikes (e.g., COPE [42]) consistently
hurt TCP throughput despite achieving near-optimal MLU.

More surprisingly, we find that application adaptation to
location diversity, i.e., the ability to download content from
multiple potential locations, blurs differences even in the
achieved capacities of different TE schemes enabling all of
them to be near-optimal. With location diversity, we find
that the inverse of the MLU is no longer a meaningful
metric of capacity. Instead, we formalize a new metric of the
capacity achieved by a TE scheme called the surge protection
factor (SPF) that captures the factor of increase in demand
that can be sustained while accounting for location diversity.
Although location diversity significantly increases the SPF
of all TE schemes, it benefits sub-optimal TE schemes like
OSPF weight-tuning [19] more, enabling them to catch up with
optimal TE. Even the static routing scheme, InvCap, achieves
an SPF at most 30% worse than optimal TE.

The rest of the paper is as follows. Section II explains
how location diversity changes the TE problem. Section III
presents our simulation setup. Section IV compares the appli-
cation performance of TE schemes and Section V compares
their achieved capacity under location diversity. Section VI



discusses related work and (Section VII) concludes.

II. ENGINEERING TRAFFIC WITH LOCATION DIVERSITY

In this section, we introduce location diversity, explain how
it changes the traffic engineering problem, and introduce a new
metric to quantify the capacity achieved by traffic engineering
schemes with location diversity.

A. Location diversity: Prevalence

Location diversity, or the ability to download content from
multiple potential locations, is widespread in the Internet
today. Major commercial CDNs, e.g., Akamai [3], Level-
3 [30], EdgeCast [16] etc., commonly replicate content at
hundreds of locations and redirect users to the best server
based on proximity or dynamic monitoring of server and
network congestion [40]. Popular P2P applications such as
BitTorrent [10], PPLive [36] download content simultaneously
from many peers that are chosen based on a number of factors
including network congestion. Other examples of location di-
versity include cloud computing infrastructure providers such
as Google and Amazon with geographically distributed sites;
content hosting services such as Carpathia [12], Rapidshare
[5], etc.; mirrored websites such as SourceForge, Debian, etc.

Although quantifying the extent of location diversity in
today’s Internet is difficult, back-of-the-envelope calculations
based on existing measurement studies suggests that it is
significant. CDNs alone are estimated to account for 10% of
Internet traffic [7]. Major cloud computing and content hosting
companies with location diversity contribute to a significant
fraction of Internet traffic, e.g., Google (6%), Comcast (3%),
RapidShare (5%) and Carpathia (0.5%), a trend that is pro-
jected to increase in the near future [27], [7]. The fraction of
P2P traffic in Internet was estimated to be between18-60% by
different measurement studies in 2009.

B. Location diversity: Impact on TE

Location diversity necessitates revisiting traffic engineering
as it changes the assumptions underlying the traditional for-
mulation of the problem, as described next.

1) Location diversity increases capacity: Location di-
versity can significantly increase the capacity of a net-
work. For example, consider the three-node network in
Figure 1. Suppose each link has 100 Mbps of capac-
ity and each node seeks to download some content.

Fig. 1. Triangle network

Without location diversity, each
node can download its content
from exactly one location, say
its counter-clockwise neighbor,
i.e., 1 downloads from 2, 2 from
3, and 3 from 1. In this case,
each node gets 150 Mbps of flow
using both the direct and the 2-
hop path to its source node. With
location diversity. each node can download from both adjacent
nodes. Now each node can receive a total of 200 Mbps. In this
example, a diversity of two locations increases the capacity of
the network by 200/150 = 1.33.

2) Location diversity changes the TE problem: A key
assumption underlying the traditional formulation of the TE
problem is that the input traffic matrix is fixed, i.e., computing
routes by itself does not change the traffic matrix (although
it may change over time due to inherent variation in user
demand). However, when applications can leverage location
diversity, the traffic matrix itself depends upon the TE scheme,
i.e., the very act of computing routes can change the matrix.

Fig. 2. Lasso network

The three-node network in Figure 2 exemplifies the above
phenomenon. All links are assumed to have a capacity of
100 units and a constant delay. The top link A has a very
small delay compared to the other two links that both have
equal delay. Node 1 has 100 Mbps of demand that it can
obtain from 2 as well as 3. In addition, there is 20 Mbps
of demand at node 1 which it can obtain only from 2. We
assume that the aggregate demand at a node consists of a
large number of user-initiated connections. When content can
be downloaded from multiple locations, users initiate parallel
TCP connections and the throughputs along paths in a parallel
TCP connection are inversely proportional to the path delays.
The TE scheme is assumed to be OSPF-based, i.e., shortest-
path routing using configured link weights and traffic split
equally among multiple paths with equal weights.

Suppose the weights of the links A and B are unequal and
the link A has more weight. As a result, all of the traffic
between 1 and 2 is routed using only link B. 1 splits its
demand of 100 Mbps using parallel TCP equally between
links B and C. Thus, the traffic on links A, B, and C is 0,
70, and 50 respectively. In the next step, seeking to balance
load better for this resultant matrix, the TE scheme sets both
the links A and B to the same weight (hoping to achieve
link utilizations of 35, 35, and 50 respectively). Consider how
parallel TCP connections respond to this change. Assuming
each TCP connection between 1–2 is pinned to only one of the
two paths—as is commonly done in practice to achieve equal-
cost multi-path (ECMP) splitting—50 Mbps of demand at 1
gets routed using parallel TCP connections over the link A and
link C, and an equal amount using parallel TCP connections
along the link B and link C. In addition, the 20 Mbps of
background traffic is split equally among link A and link B as
per ECMP. Since link A has a much smaller delay than link C,
the 50 Mbps of demand at 1 using parallel TCP along those
two paths will flow entirely through link A. The remaining 50
Mbps using B and link C will get split equally across the two
paths by parallel TCP. Thus, the traffic on the links A, B and
C is 60, 35, and 25 respectively, which is different from what
the TE scheme engineered for (namely, 35, 35, and 50). The
resulting MLU of 0.6 is different compared to 0.5, the value
that the TE scheme expected.



C. Location diversity: Quantifying capacity

How can we quantify the capacity achieved by a TE scheme
in the presence of location diversity? In general, the capacity
is a region that includes all of the traffic matrices that it
can accommodate. However, quantifying the capacity of a
TE scheme as a region may shed little light on its ability to
tolerate typically encountered load spikes. Furthermore, it is
cumbersome to compare TE schemes that achieve overlapping
capacity regions. So, it is common to use a more concise
metric such as the MLU to characterize the capacity with
respect to a given traffic matrix. Intuitively, the inverse of the
MLU serves as a metric of capacity, e.g., if a TE scheme
achieves an MLU of 0.25 for a given matrix, then it can
tolerate up to a 4× surge in the load represented by the matrix.
Unfortunately, as the example in Figure 2 shows, MLU is not
a meaningful metric of capacity when application adaptation
to location diversity determines the traffic matrix.

With location diversity, the demand is best represented as a
“content matrix” that specifies for each node and each content
the traffic for that content at that node and the set of source
locations from where that content can be downloaded (e.g.,
100 Mbps at node 1 downloadable from 2 and 3, and 20
Mbps at node 1 downloadable from node 2, in Figure 2). The
traffic matrix corresponding to this demand depends upon the
underlying routes and application behavior (e.g., how parallel
TCP splits traffic across the download locations). Furthermore,
scaling the demand does not simply scale the traffic matrix
entries by the same factor. In general, it is difficult to predict
how application behavior might change the traffic matrix for
a projected surge in demand, as that change depends upon the
underlying routes that in turn depend upon the original traffic
matrix. Indeed, as the example shows, even if the demand is
unchanged, the mere act of engineering routes can change the
traffic matrix yielding a different MLU than expected.

1) An empirical capacity measure: We propose a new
metric, surge protection factor (SPF), to quantify the capacity
achieved by a TE scheme with respect to a traffic matrix.
Let E denote a TE scheme, M the demand specified as a
content matrix. When there is no location diversity, M can
be easily transformed to a unique traffic matrix T (M). Let
MLU(E, T (M)) denote the MLU achieved by E given the
traffic matrix T (M). In this case, SPF(E,M) is simply the
inverse of MLU(E, T (M)), i.e., the factor of increase in the
demand that can be satisfied. However, in the case when there
is location diversity, SPF(E,M) is an empirical measure of
the satisfiable increase in demand computed as follows. Let
kM denote the demand that scales each entry in M by a
factor k > 1. Then, SPF(E,M) is defined as the largest k
such that the routing computed by E (for the matrix T (M))
can satisfy the demand kM .

Determining if an engineering scheme can satisfy a pro-
jected demand is difficult as it requires us to accurately model
application adaptation to location diversity, so SPF is useful
mainly as an empirically measured capacity metric. To this
end, we describe our experimental setup next.

III. EXPERIMENTAL SETUP

In this section, we describe our experimental setup based on
ns-2 used to compare TE schemes with respect to their impact
on application performance. We chose ns-2 as it is well-suited
for simulating thousands of flows in an ISP network at the
packet level while also incorporating transport and application
behavior in a fine-grained manner.

A. Simulating traffic matrices in ns-2
Figure 3 illustrates the experimental process. Each simula-

tion has three inputs: (1) ISP Topology (2) a sequence of File
Arrivals at each node based on the current TM (3) Routing,
as computed using a TE scheme.

We construct an ISP network topology from our dataset con-
sisting of PoP-level ISP topology maps. PoPs are represented
as nodes and links between these nodes are the backbone links
of the ISP. Each PoP node has a number of users connected
to it via separate access links. Each PoP node also has five
server nodes connected to it via high capacity links that serve
files to users. The number of user nodes in our simulation
ranges from 300-6000 nodes and the capacity of backbone
links varies from 50Mbps to 1Gbps.

{TM (-1)}

Routing
File Arrivals

ISP 
Topology

ns-2 
simulation

TCP download rate, MOS

TM

TE

Fig. 3. Block diagram of experiment process

We translate a TM to a sequence of File Arrivals as follows.
Suppose the traffic matrix entry from A to B is 100 Mbps
and the duration being simulated is 200 seconds. During the
experiment interval, we generate a sequences of file arrivals
from A to B whose total size is 100Mbps × 200 seconds and
the sizes are chosen from a realistic distribution.

A traffic engineering scheme TE calculates routing for TM
based on a set of matrices TM(-1) which consists of either the
current traffic matrix (for Optimal) or a set of matrices from
the previous traffic engineering epoch (for other TE schemes).
The length of the epoch depends on TE, e.g., the epoch length
for OptWt is 3 hours and for COPE is 1 day. When TE yields
a routing that splits flows across multiple paths between two
nodes, the number of files assigned to each path is proportional
to the flow along that path. We use the source routing option
in ns-2 to pin a file to a path. We note that the link utilization
values obtained using this ns-2 methodology are consistent
with those obtained using a simple linear program with the
difference being at most 0.1.

In order to make the simulation complexity tractable, we
scale down the topology and matrices. ISP backbone link
capacities run into tens of Gbps. Simulating such a network



at scale even for 100 seconds would require sending data
on the order of terabytes (or equivalently, a million 100KB
files). Experimentally, we find that simulating at a tenth of
this scale, i.e., 100K files, is feasible given the computational
and memory constraints of our machines. A typical scale in
our simulation is 1/20, i.e., we simulate the backbone link with
1/20 the capacity and also scale down the traffic between each
source-destination pair accordingly.

1) ISP topologies and traffic matrices: We use datasets
from the following three ISPs for our experimens:

ISP Nodes Links Duration

of each

TM

Abilene 12 30 5min
Geant 22 68 15min
US-ISP - - 1hr

Fig. 4. ISP Data

(1) Abilene,
from the publicly
available Abilene
ISP data [2].
(2) Geant, the
un-anonymized
version of the Geant
topology obtained
from the TotemData [41] project personnel. (3) US-ISP, a
large Tier-1 ISP topology obtained from authors of [46].
TMs for all ISPs were logged in the period from 2004-2005.
Figure 4 shows number of nodes, number of links, and the
interval at which TMs are logged for each ISP. The number
of nodes and links for US-ISP is proprietary information.

2) Simulation parameters: Unless otherwise stated, we
choose the following parameters for all of our simulations.
Our goal is to choose parameters that are close to realistic
values for ISPs.
Scale: We experiment with Abilene, Geant and US-ISP
datasets at scales 1/10, 1/20 and 1/100 respectively. These are
the largest scales we can experiment with for each network
given our computational constraints.
Duration: The simulation duration for most experiments is
300 seconds. We verified that running the simulations for
longer durations did not qualitatively affect our results. Note
that the duration here refers to the real time being simulated
in ns-2, not the system time required to run the simulation.

BW

(Mbps)

US

users

%

Europe

users

%

0.25 4.9 1.5
2.0 38.1 26.2
5.0 32.4 57.8
10.0 20.0 14.5
20.0 4.6 -

Fig. 5. Bandwidth Distribution

Bandwidth of users: We use
the bandwidth distribution of
Internet users from the “State
of the Internet Report” [4] re-
leased by Akamai, one of the
largest commercial content dis-
tribution networks in operation
today. Figure 5 tabulates this
data for US and Europe.
File sizes: We simulate three
file sizes of 100KB, 1MB and 10MB respectively contributing
to 8%, 3% and 89% of the total traffic respectively. These
values are the fractions of traffic due to small files (<200KB),
medium size files (200KB to 2MB), and large files (>2MB)
in the Internet. We obtained these numbers by collating data
from multiple sources [27], [23], [22], [43].
Link delay: We calculate the propagation delay of backbone
links from geographic distances between nodes for Geant and
US-ISP. For Abilene, we measure the propagation delay of
backbone links using traceroute and ping between PlanetLab
[35] nodes in cities where the PoPs are located. All links use

drop-tail queuing.
File inter-arrival time: We assume an exponential distribution
of file inter-arrival times.

3) Computational resources: We use a shared cluster of 60
machines. Each machine has a 8-Core Intel Xeon processor
and 16GB of memory. Each ns-2 simulation consists of 300–
500s of simulated time and 10K to 200K file downloads, which
results in a memory footprint of up to 10GB and takes between
1 to 48 hours to complete.

B. Traffic engineering schemes
We select a subset of TE schemes reflecting a variety of

proposed approaches in the literature.
Optimal, the minimum MLU TE scheme for a TM. We
consider it as being representative of online TE schemes.
InvCap, a simple routing scheme that does not “engineer”
traffic, but instead simply relies on shortest-path routing using
the inverse of the link capacity as the link weight. InvCap
is a common default routing protocol supported by popular
commercial router vendors [13].
OptWt, a shortest-path routing algorithm using link weights
computed using a heuristic algorithm to optimize a cost
function [20]. We use its implementation in the Totem Toolbox
[41]. Typically, ISPs recompute routes a few times a day
based on a set of measured TMs, so we simulate OptWt by
computing a new routing every 3 hours based on the average
of matrices in the past 3 hours.
MPLS, a TE scheme that minimizes the MLU in an offline
manner. Similar to OptWt, MPLS recomputes a new routing
once every 3 hours based on average of TMs in past 3 hours.
COPE, a TE scheme that minimizes the common-case MLU
while limiting the worst-case MLU caused by unpredictable
spikes in the traffic matrix. We use the authors’ implementa-
tion and parameters settings, and recompute routes once a day
based on the previous day’s TMs as in [42].

IV. APPLICATION PERFORMANCE

In this section, we present a comparative analysis of the im-
pact of different TE schemes on end-to-end application perfor-
mance. A summary of our findings is as follows. First, all TE
schemes including InvCap show nearly identical application
performance for TCP and UDP traffic. Second, different TE
schemes do achieve different MLUs as expected, suggesting
that MLU is a poor predictor of application performance.
Third, COPE consistently performs slightly worse than all
other schemes in TCP throughput, suggesting that accounting
for unpredictable variations in traffic hurts the common case
application performance.

A. TCP performance
We simulate TMs from 2 days of data for each ISP. For each

day, we simulated 50 matrices measured at 5-minute intervals
for Abilene, 25 matrices measured at 15-minute intervals for
Geant, and 24 matrices measured hourly for US-ISP. We
present results for the second day. The metric of application
performance is the download rate of files using TCP, where
the file arrival workload is generated using the traffic matrices
as described in Section III-A.
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Fig. 6. Mean download rates

Figure 6 shows
the mean download
rate of files, where
the average is across
all files across all
of the simulated
matrices for each
TE scheme. The
results show that
all schemes achieve
nearly same mean
download rates
with the exception
of COPE that is
consistently worse
by up to 10%.
Furthermore, as expected, Optimal (the leftmost bar in each
group) is not always the best as minimizing MLU is not the
same as optimizing TCP performance. Figure 7 shows the
corresponding CDFs for the mean download rates in Figure
6. The CDFs show that the near-identical TCP performance
achieved by all TE schemes is not an artifact of presenting
a specific statistic such as the mean, but is reflected by
the entire distribution. All distributions show a stepwise
increase which suggests that access links are a bottleneck for
a significant fraction of file transfers.

1) MLU vs. TCP performance: To further investigate the
results in Figure 6 and Figure 7, we analyze the empirically
observed MLU for all TE schemes in the experiments. Figure
8 plots the MLUs for all matrices considered. For US-ISP
the MLU data is proprietary, so we present the ratio of MLU
with respect to Optimal. As expected, different TE schemes do
show substantially different MLUs, e.g., the MLU for InvCap
and OptWt is up to twice the MLU of Optimal in some
cases. These results suggest that MLU is a poor predictor
of download rate performance: schemes with near-identical
TCP throughput have very different MLUs, and COPE despite
achieving near-optimal MLU consistently shows sub-optimal
TCP throughput.

The main reason why MLU does not affect download rate
is because queuing delay and loss rates are negligible until
link utilization reaches a threshold. In our experiments, link
utilization below 0.7 causes near negligible loss rates and
queuing delays. Since the MLUs on most of the traffic matrices
are below this value, loss rates on backbone links minimally
impact the throughput of file downloads. These observations
are consistent with a recent Level-3 study [9] showing that loss
rates on backbone links are zero even at 95% link utilization.
This threshold is expected to be higher for actual backbone
traffic as our experiments are at scale 1/10 or smaller. At larger
scales, there would be more concurrent flows resulting in less
bursty traffic and lower loss rates.

The second reason why MLU hardly impacts the average
download rate as well as the distribution is because it is largely
determined by the traffic of only one link. Even under high
MLU, the rest of the network may not be congested. File
download rates are affected only for flows on this link, which
may be a tiny fraction of the total traffic.

2) The price of predictability: Why is COPE’s performance
consistently worse than the other schemes? To investigate this,
we analyzed the propagation delays of routes computed by
COPE. Given uniformly low loss rates and queueing delays,
propagation delays primarily determine TCP performance.

Figure 9 shows the path delay averaged across all files and
across all matrices for the different TE schemes. COPE has a
significantly higher delay compared to all other schemes. We
attribute this phenomenon to COPE’s optimization approach,
which engineers for unpredictable spikes in traffic demands.
Specifically, COPE attempts to bound the worst-case MLU for
any traffic matrix similar to oblivious routing like schemes [6].
COPE intentionally routes some traffic along longer paths so
as to leave room for occasional traffic spikes along shorter
paths. While this approach makes COPE robust with respect
to MLU under rare spikes in traffic, it comes at the cost of
hurting common-case application performance. Although we
have not experimented with other oblivious routing schemes,
these results suggest that any oblivious routing scheme that
attempts to optimize MLU, e.g., [6], is likely to incur a similar
penalty in application performance in the common case.

B. UDP performance

1) Measuring UDP performance: We assume that the loss
rate and the queuing delay on each link for UDP traffic is the
same as that measured during experiments with TCP traffic.
This assumption is reasonable as TCP accounts for over 90%
of Internet traffic [21]. We calculate the loss rate and delay for
a path by combining the loss rates of links along the path; we
compute the delay by summing the propagation and queuing
delay of links along the path.

We compare performance of VoIP traffic (which uses UDP)
using Mean Opinion Score (MOS). MOS is an industry
standard VoIP call quality metric for which a score of above
4 is considered good and below 3 is considered bad. We
calculate MOS using the formula in [14] which calculates
MOS given the loss rate and delay for a path.

We calculate MOS for VoIP calls between all pairs of
source and destination PoP nodes in an ISP. First, we measure
loss rates and queuing delay on backbone links for each 10-
second interval. For each interval, we calculate the MOS
for a path based on its end-to-end loss rate and delay. The
mean MOS for a path is the average value of MOS over all
intervals. For TE schemes that split traffic across multiple
paths between a source-destination pair, the mean MOS for
a source-destination node pair is calculated as the weighted
average of mean MOS weighted by the fraction of the traffic
split along each path between the node pair. We similarly
calculate the 5th percentile MOS for a source-destination pair
by taking the weighted average of 5th percentile MOS values
for all its paths.

2) Results: We obtain a distribution of mean MOS values
for a TE scheme by combining mean MOS values for all
pairs of source and destination nodes for all traffic matrices.
We find that the minimum and the maximum values of mean
MOS for all TE schemes are in the range (4.08,4.14) for
Abilene, (4.07, 4.14) for Geant and (4.08, 4.14) for US-ISP.
The range of values for 5th percentile MOS are (4.07,4.13)
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Fig. 7. Download rate CDFs for all TE schemes are near identical except COPE which has slightly lower performance
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Fig. 9. COPE has the highest propagation
delay among TE schemes

for Abilene, (4.08, 4.14) for Geant and (4.05, 4.14) for US-
ISP. MOS scores for all schemes are always above 4.0 and the
differences between different TE schemes is at most 0.1. These
results are not surprising since loss rates and queuing delay
are near-negligible for most links in the network. Furthermore,
MOS is not very sensitive to few milliseconds difference in
propagation delay among TE schemes.

V. CAPACITY AND LOCATION DIVERSITY

The results in the previous section may seem unsurprising—
different TE schemes yield nearly identical application per-
formance simply because today’s low traffic demand levels
obviate the need to engineer traffic. However, in this section,
we show that similar conclusions hold when we compare TE
schemes with respect to their potential capacity, i.e., their
ability to accommodate surges in traffic demand in the future.

The key factor that explains our unexpected findings is
location diversity, i.e., the ability to download content from
multiple locations. Our main findings are that (1) location
diversity can significantly increase the capacity (by up to
2×) achieved by all engineering schemes; (2) even a modest
amount of location diversity (e.g., the ability to download
content from two locations) enables all engineering schemes
to achieve near-Optimal capacity; (3) with location diversity
even simple routing scheme of InvCap has at most 30% less
capacity compared to Optimal.

A. Empirically measuring capacity
Our metric of capacity is the SPF, i.e., the maximum

surge in demand that can be satisfied (as defined formally
in Section II-C1). Analytically determining whether an engi-
neering scheme can satisfy a projected demand is difficult as
it requires us to accurately model application adaptation to
location diversity, so the SPF must be determined empirically.

In our experiments, we use a metric called maximum input
output difference (or Max-IO-Diff) to determine whether a
given demand can be satisfied. For each node, the input is the
total traffic (bits/sec) requested by that node, while the output
is the total traffic received by that node. Max-IO-Diff is defined
as the maximum across all nodes of the relative difference
between the input and output, i.e., (input - output)/input. If
Max-IO-Diff is measured to be less than 0.1, then the demand
is considered as satisfiable. We allow for a small difference
in order to account for measurement error as well as to
account for bursts in demand over the measurement duration.
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Fig. 10. Profile of Max-IO-Diff at increasing surge
factors for a Geant TM

Max-IO-Diff
helps clearly
distinguish
workloads that
can be satisfied.
For example,
in Figure 10,
we show a
Max-IO-Diff
profile for five
experiments at
surge factors of
1, 2, 3, 4 and 5
for a Geant TM with InvCap routing. The graph shows the
Max-IO-Diff measured at intervals of 10 seconds throughout
the simulation. We ignore the first 50 seconds of simulation
as the input significantly exceeds output at the start of
simulation. We observe that beyond the initial period of
fluctuation, Max-IO-Diff is relatively stable and below 0.1
for surge factors 1–3 that can be satisfied, but significantly
higher for surge factors 4 and 5 that can not be satisfied.



B. Simulating location diversity
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Fig. 11. Block diagram of experiment process with location diversity

Figure 11 illustrates the experimental process with location
diversity. The lower half is similar to Figure 3 with two
differences. First, to incorporate location diversity, we modify
the procedure to transform TM to File Arrivals as follows.
As in Section III, we first transform PoP-to-PoP entries in
TM to a sequence of file download requests. However, instead
of downloading each file from just that one location, k-1
additional randomly chosen source locations are introduced
so as to emulate a location diversity of k. The file is down-
loaded in parallel from all k locations using parallel TCPs.
The download is considered complete when the total bytes
downloaded across all k locations equals the size of the file.

Second, application adaptation to location diversity changes
the input to TE as indicated by the block Transformed TM(-
1) that is obtained as follows. Let TM(-1) and TM(-2)
respectively denote the (set of) matrix(ces) in the last and
last-to-last epochs. Recall that TE determines the length of
the epoch (0 for Optimal, 3 hours for OptWt and MPLS and
a day for COPE). Transformed TM(-1) is generated by the top
simulation that takes as input the file arrivals obtained from
TM(-1) and Routing (-1). The latter is obtained by applying TE
to TM(-2) in the previous epoch. This two-step simulation is
intended to approximate the interaction of TE and application
adaptation to location diversity that changes the TM.

C. Experimental procedure
The experiments to determine SPF involve a computation-

ally intensive search across many different surge factors for
each matrix. Furthermore, at high surge factors, the number of
ns-2 data structures required to simulate ongoing parallel TCP
connections becomes prohibitively high. So for computational
tractability, we selected 4 matrices each from one day of data
of each ISP. The matrices were selected randomly, one from

each 6-hour duration during the day. For each matrix and
each engineering scheme, we conduct an experiment at each
value of the surge factor starting from 1 in increments of 0.25
until the capacity point is reached, i.e., the Max-IO-Diff value
exceeds 0.1. Each experiment is run until the Max-IO-Diff
value stabilizes or 300 seconds, whichever is greater.

D. Capacity increase with location diversity

In Figure 13, we present the SPF values obtained using
ns-2 simulations for the selected TMs. We compared all TE
schemes for three levels of location diversity: k = 1, 2 and 4.
Note that we do not present the results for COPE for US-ISP (k
=2 and k = 4), since the implementation of COPE’s algorithm
failed to compute a feasible set of routes even after 12 hours of
simulation time (1 million iterations) after which we aborted
the simulation. We have used authors’ implementation of the
algorithm and communication with them confirmed that indeed
in some cases COPE’s implementation can take a long time
to terminate. This happens in cases where barrier-crossover
method to solve a linear program fails and COPE instead uses
simplex method which is much slower.

The average capacity increase for Optimal from k = 1 to
k = 4 is 1.41× and from k = 1 to k = 2 is 1.31×. Optimal
is the maximum SPF for a network with no location diversity
(k = 1). This shows that a network with location diversity
of k = 4 has 40% greater capacity than a network with no
location diversity. Even location diversity of k = 2 gives 75%
of capacity increase obtained from location diversity of k = 4.

TE/Optimal k=1 k=2 k=4
Optimal/Optimal 1 1 1
MPLS/ Optimal 0.89 0.98 0.99
OptWt/Optimal 0.73 0.99 0.99
InvCap/Optimal 0.91 0.86 0.85
COPE/Optimal 0.91 0.99 0.98

Fig. 12. Comparison of SPF values

Location diversity
enables all TE schemes
to achieve near-optimal
capacity. In Figure 12
we compare the SPF
of Optimal to that of
other TE schemes. The
statistic presented is
ratio of SPF of TE scheme to SPF of Optimal for the same
level of location diversity averaged over all TMs. Except
InvCap, all TE schemes have SPF within 2% of Optimal
for k = 4 as well as k = 2. Figure 13 shows that with
location diversity any TE scheme has at most 10% capacity
difference compared to Optimal. On average InvCap has 15%
less capacity compared to Optimal for a location diversity of
k = 4. In the worst case InvCap achieves a capacity that is
30% less than Optimal (Figure 13, Geant k = 2).

The above result calls into question the usefulness of online
TE schemes. In today’s Internet, offline TE schemes such as
OptWt or MPLS are commonly used. It is believed that these
schemes are sub-optimal and online TE schemes (e.g., TeXCP,
MATE etc.) can achieve near-optimal capacity. However, our
results suggest that application adaptation to location diversity
results in near-optimal SPF for all TE schemes. Even the
shortest-path routing scheme, OptWt, achieves the same SPF
as TE schemes employing MPLS for flow splitting.

1) Other results: We briefly summarize other experimental
results deferred to a technical report [1] for lack of space.
First, SPF increases in a concave manner with the fraction of
traffic that can leverage location diversity. Even if only half
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Fig. 13. Comparison of SPF among TE schemes for different levels of location diversity; SPF values are obtained using ns-2 simulations

of the traffic has location diversity, it suffices to capture over
90% of the potential increase in SPF for each TE scheme,
and the SPFs achieved by different TE schemes continues to
be less that 5%. Second, the “near-optimality” of capacity
achieved by all TE schemes is reflected not only in their
SPFs but in application performance metrics as well, i.e., TCP
download rates and MOS scores (in the mean as well as across
various percentiles) degrade similarly for all TE schemes as
the demand approaches the SPF capacity point. As expected,
application performance starts to dip earlier under InvCap as
its SPF is somewhat lower than TE schemes. Thus, these
results also suggest that, unlike link utilization metrics, SPF
is a sound empirical metric to measure how effectively a TE
scheme can accommodate load surges under location diversity.

VI. RELATED WORK

Traffic engineering: The past decade has seen considerable
work in the area of traffic engineering seeking to optimize
link utilization based metrics using OSPF [19] or MPLS [44].
TE techniques can be broadly classified as offline, online, or
oblivious. Offline TE is done using measured TMs by ISPs and
is widely deployed today [37]. Different approaches to offline
TE include optimizing OSPF link weights [20]; optimizing
over multiple TMs [46]; optimizing for unpredictable traffic
demands [42], and so on. In contrast, online TE computes
routes using online measurements of network conditions [17],
[42]. The main argument in favor of online TE is that their

responsiveness at short time scales can enable them to achieve
costs close to the optimal. In contrast to offline or online
TE, oblivious routing algorithms seek to compute routes
that perform well across all possible traffic matrices thereby
obviating TE [6].

In contrast to all of this prior work, our work studies TE
focusing on application performance metrics instead of link
utilization based metrics. Prior work has recognized that TE
schemes can increase path delay, e.g.. [29]. To the best of our
knowledge, our work is the first to empirically quantify the
impact on TCP throughput and to show that engineering for
rare traffic spikes comes at the cost of hurting common-case
TCP throughput. He et al [26] consider the joint optimization
of congestion control and routing and propose a distributed
online solution that optimizes an aggregate utility function
of TE cost and user-perceived performance. In comparison,
we empirically study the interaction of TE and application
adaptation with network and transport layer protocols that are
widely deployed today.
Interaction of location diversity and TE: Recent work has
explored the joint optimization of TE and content distribu-
tion, i.e., choosing the best location(s) to download content.
P4P [45] seeks to improve application performance for P2P
traffic and also reduces cost for ISP by reducing interdomain
traffic and MLU. In [28] and [15], the authors study the
interaction between TE and content distribution using a game
theoretic model and show that without a joint optimization, the



equilibrium of this interaction may not be a socially optimal
solution. The three node network in Section II also illustrates
this point.In [28], it is shown that a joint optimization can
achieve benefits of up to 20% for ISPs and up to 30% for
CDNs as compared to the case when there is no cooperation
between them. While such coordination-based proposals may
be adopted in future, TE and content distribution are done
by separate entities today. Our work studies this interaction
in the present setting and shows that even without a joint
optimization approach, location diversity increases capacity
for TE schemes by up to 2× and enables all TE schemes
to achieve near-optimal capacity.
Path Diversity: Path diversity is another form of application
adaptation which has been explored in research, e.g., detour
routing [38], and is used in Internet today, e.g. Akamai [3]
which uses detour routes for data transfer within its network of
servers, and Skype [39], the popular VoIP application, which
uses an overlay network to route data. Our focus in this paper
is on location diversity. We intend to analyze the effect of
adaptation in the form of path diversity as a part of our future
work.

VII. CONCLUSION

Our application-centric focus and empirical evaluation
methodology reveal unexpected results that challenge con-
ventional wisdom in traffic engineering. We find that link
utilization, the most widely used metric to evaluate TE, is
a poor predictor of application performance. Under typical
Internet load conditions, all TE schemes and even static rout-
ing achieve nearly identical application performance despite
achieving vastly different MLUs. In fact, engineering link
utilization in order to accommodate unexpected traffic spikes
can actually hurt common-case application performance. More
intriguingly, we find that application adaptation to location
diversity, or the ability to download content from multiple
locations, eliminates differences in the achieved capacity of all
TE schemes including “optimal” TE. With location diversity,
even static routing achieves a capacity that is at most 30%
(and typically significantly less) worse than the optimal. Taken
together, our findings suggest that it matters little which TE
scheme is used (or whether TE is used at all) at today’s traffic
levels as well as under reasonable projections of increased
demand. A provocative message to network operators is to stop
engineering traffic and let end-users do the work for them.
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