cvescier: Greedy Algorithms and Matroids — Lecture 4

Our next algorithmic paradigm greedy algorithms A
greedy algorithm tries to solve aptimization problem
by always choosing a next step thatlogally optimal.
This will generally lead to docally optimal solution,
but not necessarily to globally optimal one.

When the goal of our optimization is toaximize some
guantity, we call a locally optimal solutiamaximal and
a globally optimal onanaximum. If we areminimiz-

Ing the quantity, we call thesminimal and minimum

respectively.

We begin with a minimization problem that can be solved
with a greedy algorithm.

CMPSCI611: Minimum Spanning Trees Lecture 4

Suppose we haveveeighted undirected graphG that is
connected A spanning treeis a subset of the edges that

IS connected and istaee (that is, it hasno cycles. Any
connected graph has a spanning tree, and it may have
many of them. Aminimum spanning tree (MST) is a
spanning tree that has a total weight (sum of the weights
of its edges) that is no greater than that of any other span-
ning tree. There may be more than one MST in case of
ties.

Note that edge weights are always positive. (We may
sometimes use edge weights of zero, but these could if
necessary be thought of as just very small positive num-
bers.)

Kruskal’'s Algorithm is a greedy solution to the mini-
mum spanning tree problem.

e Sort the edges by weight, cheapest first.
e SetF' to be the empty set.

e For each edgein order, add to F' unless this would
create a cycle ir¥'.

e Returnt..

We need a way to determine whether an eelgecates a
cycle in F'. To do this, we keep track of theonnected
componentsof I’ — the sets of vertices aff such that
two vertices are in the same component iff there is a path
from one to the other i’. Lete = (z,y) wherez andy

are vertices. I andy are in the same component, adding
e to F would create a cycle. If not, addirgmerges the
two connected components.

The simplest way to merge the components is to scan a
table mapping vertices to components, moving each ver-
tex of the smaller component into the larger one.

We now need to prove that the Kruskal algorithm actually
produces an MST. First, though, a warmup problem to
get us used to working with graphs and induction:

One-Question Final Exam for CMPSCI 250:

Let F' be a forest (a acyclic undirected graph) wither-
tices, k edges, an@ connected components. Prove that
c=n—k.

Proof by induction ore — we show that the desired fact
IS aninvariant :

“As it was In the beginning, is now, and ever shall be”
(Anglican Book of Common Prayer)

Base CaseNo edgesyp componentsy = n — 0.

Inductive Step: Add an edge — it merges two connected
components into one, since if its endpoints were already
connected it would create a cycle. By inductioa n—k
before, nowc — 1 =n — (k+1).

Conclusion: If we ever reactk = n — 1, thenc = 1 and
we have a tree.

Correctness of Kruskal:

Given a forestF, let S(F') be the set of spanning trees
that contain all off’s edges.

As we add edges, the following invariant stays trug(#')
contains an MST".

Base CaseSinced is connected, an MST exists, and it
containsE which is(.

Inductive Step: We assume thaf (/') has an MST, and
we add the cheapest available edge, called(x,y), to
F. We must show that(F U {e}) contains an MST.

We’'ll show that for any tred” in S(F') thatdoesn'tin-
cludee, there is a tree thadoesinclude e and has the
same or lower total weight.

SinceT’ is a tree, it contains a path betweemandy, the
endpoints ofe. Since there was no such pathin the

path contains some edgethat is not inf'. Our cheaper
tree is going to b&”" = (T'\ {€'}) U {e}. Sincee was the
cheapest available edge, this set has total weight equal or
smaller than that of". But how do we know thal” is a
tree?

T" = (T\{e'}) U{e}

InT, e = (u,v) was part of a path from toy. In 7", we
can still get fromu to v by going fromwu back along the
path tox, overe to y, and backward on the path to So
the only edge irl" that is not inT” can be successfully
bypassed irf”, so every path irf” can be simulated in
T', andT"is connected.

Why doesn’tl” have a cycle? A cycle would have to con-
nectx to y by another route. But in the trééthere was
a unique path fromx to y, and we broke it by removing

e,

Conclusion: At any time in the algorithm, iff’ is not

a tree, there must be edges(@nthat join separate con-
nected components &f. These edges must be at least as
expensive as any edges M) since otherwise we would
have looked at them already and added then#'tbe-
cause they join components bf

So the algorithm can stop only whénis a tree. At that
point S(F) = {F}, soF itself must be an MST.

Timing of Kruskal:

The timing will depend on both, the number of vertices,
andk, the number of edges. (Note thiat> n — 1 for a
connected graph, ard< () = O(n*) for any graph.)

Sorting the list of edges takéx & log k) time.

Setting up our table of components for each vertex takes
O(n) time. By the simple method we have described,
updating the table takes one pass over the tablé, oy
time. We will maken — 1 such sweeps foP(n?) total
time, because we will add an edge kbexactlyn — 1
times. We also might spend up @(k) time checking
edges that we don’t add #8. Thus:

T(n,k) = O(klogk) + O(n) + O(n*) + O(k)
= O(klogk + n®)

In a few lectures we’ll see how to reduce thig2k log k)
by using a betteunion-find data structure.

CMPSCI611: Subset Systems and Matroids Lecture 4

When do greedy algorithms work? It turns out that we
can give an answer to this question for a wide class of
optimization problems.

A subset systems a setE together with aset of subsets
of E, called, such that/ is closed under inclusion
This means that ik C Y andY € [, thenX € I.

The optimization problem for a subset system has as
Input a positive weight for each element6f Its output

IS a setX € I such thatX has at least as much total
weight as any other set ih

We call I the “independent sets” of the subset system,
because in generalwill be defined so it will include ex-
actly those sets that don’t have a particular kind of “de-
pendence” among their elements. Let's see some exam-
ples.

Examples of Subset Systems

Example O: Let £ be any set of vectors in some vector
space, and let be the set of sets dhearly independent
vectors. Clearly thid is closed under inclusion. This is
the origin of the name “independent sets”.

Example 1:

E = {e1,es,e3}
I = {@,{61},{62},{63};{61762}7{62763}}

The closure under inclusion can be checked directly.
can also be described as “all sets that don’t contain both
elandegﬂ

Example 2: Let E be the edges of an undirected graph,
and/ be the set of alacyclicsets of edges.

Example 3: Let E be the edges of an undirected graph,
and be the set of sets of edges that don’t have two or
edges sharing a vertex. (These sets of edges are often
called “independent sets” even outside this context, and
are also known as “matchings”).

The Generic Greedy Algorithm

Given anyfinite subset system~, I), we find a set in/
as follows:

e SetX to ().
e Sort the elements of by weight, heaviest first.

e For each element of in this order, add it toX iff the
resultis in/.

e ReturnX.

This certainly gives us a set in(unless/ is itself empty,
since() must be in/ if any set is). It is anaximalset,
meaning that no element &f can be added to it without
bringing X outside of/. But a solution to the optimiza-
tion must be anaximunset, with weight greater than or
equal to that of any other set In

Our main result is that there is a property of set systems
that determines whether this greedy algorithm is guaran-
teed to give a maximum set for all possible weighting
functions.

10

Greedy Algorithm Examples:

Subset System 1(not bothe; andes) We will gete, and
the larger ofe; andes, which must be a maximum set in
I.

Subset System 2:(acyclic sets) This is thi#laximum
Weight Forest (MWF) problem, which is the same as
the MST problem except that (a) the input graph need
not be connected, and (b) we want to maximize instead
of minimizing.

But we can convert the MST problem into an equivalent
MWF problem, and vice versa, as follows. Letbe the
maximum weight of any edge in the MWF problem, and
set the weight of each edgan the MST problem to be

m — w(e) + €.

The greedy algorithms produce exactly the same set for
the two weighting functions, and (since the number of
edges in the MST must be— 1), a maximum set for one
function is a minimum for the other.

11

Subset System 3(no edges sharing a vertex) Here is an
example where the greedy algorithm gets a maximal set
that is not maximum:

3 2
X mmmm ke % * ++++*% ———— % * ++++*% ———— %
/2 / +
2 2 / / +
/ / +
3 |/ / +
* ———= % * ++++* * ———— %
[2 / + /
2 / / +
/ / + /
/ / +/

(This is Figure 3.2 of the text.) The greedy algorithm
takes both weight-3 edges first, and gets the set In the
center, with a total weight of 6. But there is a different
Independent set that has weight 7, shown on the right.

12

CMPSCI611: Definition of a Matroid Lecture 4

A subset system is matroid if it satisfies theexchange
property: If s andi’ are sets il andi has fewer elements
than?’, then there exists an element ' \ ¢ such that
iU{e} el.

Subset System 1Thisis a matroid, as we can check the
exchange property by inspection. For example, ##
{e1}, i = {es, e3}, we can lee = e,.

Subset System 2Next lecture we’ll show that this a
matroid.

Subset System 3:This is not a matroid — let; be the
greedy matching and be the maximum matching in our
example. There is no edgeat all, much less in’, that
can be added towhile keeping it independent.

13

Next time we’ll prove:

Theorem: For any subset systefi’, I), the greedy al-
gorithm solves the optimization problem fdr,) if and
only if (£, I) is a matroid.

This is good mathematics! We've found a property of set
systems that characterizes the behavior of the greedy al-
gorithm, but doesn’t have anything obvious to do with the
algorithm. Furthermore, this property can be expressed
In more than one way. We’ll also prove next time:

Cardinality Theorem: A set system{F, I) is a matroid
Iff for any setA C FE, any two maximal independent
subsets ol have the same number of elements.

A property with ostensibly different characterizations is
more likely to be mathematically interesting. Examples
of such properties in CMPSCI 601 include the regular
languages and the Turing-decidable languages.

14

