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Abstract. We discuss properties of high order neurons in competitive learning.
In such neurons, geometric shapes replace the role of classic ‘point’ neurons in
neural networks. Complex analytical shapes are modeled by replacing the
classic synaptic weight of the neuron by high-order tensors in homogeneous
coordinates. Such neurons permit not only mapping of the data domain but also
decomposition of some of its topological properties, which may reveal
symbolic structure of the data. Moreover, eigentensors of the synaptic tensors
reveal the coefficients of polynomial rules that the network is essentially
carrying out. We show how such neurons can be formulated to follow the
maximum-correlation activation principle and permit simple local Hebbian
learning. We demonstrate decomposition of spatial arrangements of data
clusters including very close and partially overlapping clusters, which are
difficult to separate using classic neurons.

1 Introduction

A phase diagram contains data points representing measurements of a phenomenon
plotted in multi-dimensional space. If the measured phenomenon follows no rules, the
data points will uniformly fill the data space. However, if there are any governing
principles to the measured phenomenon, the data points will not fill the space
uniformly, but rather will form some kind of structure or pattern. Tools for
exploratory data analysis such as neural networks may then be used to map this
structure, and so create a model for the behavior of the phenomenon.

In many cases, however, mapping the phenomenon, i.e. determining what areas in
the data space it is more likely to occupy, is not sufficient. In order to understand the
laws that govern the phenomenon, it is necessary to decompose the mapped volume
into its components and derive relationships among them. It is convenient to associate
the simpler mapping of the phenomenon with determination of its metrics, and the
“deeper” understanding of the governing principles or symbolic structure with
determination of its topology. In this paper we take the view where in order to extract
symbolic meaning from an observed phenomenon it is necessary to use neuronal units
that can individually account for a complete symbolic rule. In practice, we use
geometric shapes: the shape itself is the symbolic rule and its parameters (say
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curvatures and gradients) are the tunable parameters. We describe an augmentation to
classic competitive neurons that permits them to decipher these aspects.

The ability to determine the topological structure of the data domain is considered
a primary capacity of Kohonen’s self-organizing map (SOM) (Kohonen, 1997).
Under certain conditions, a SOM network may self-organize so that each neuron
relocates to the center of a cluster of input points which it represents. Due to the
connectivity of the net, the topology of the net is also mapped onto the topology of the
data domain, thus revealing topological properties of the structure such as cluster
proximity. However, the topological structure of the net may also act as a constraint
on the arrangement of the neurons, impeding its ability to capture certain
configurations. When this topological constraint is released by adopting full
connectivity, a general form of a vector quantization (VQ) clustering algorithm is
obtained. Such algorithms (Pal et al, 1993) can map any data arrangement, but they
do not provide information regarding the topological structure. Similarly, most other
networks acquire topological information implicitly into their weights; this
information cannot be directly extracted.

In this paper we explore an alternative approach to modeling the topology of the
data domain. Modeling is achieved by using neurons that not only map the location of
their corresponding data, but also explicitly map its local topological and geometrical
properties. These ‘geometric neurons’ are of higher dimensionality than their input
domain, and may therefore track features of the activation area that might correspond
to local symbolic properties. They use high-order ‘synaptic tensors’ instead of classic
synaptic weight vectors, where weights correspond also to combinations of inputs of
various orders. When these neurons are used in a network configuration, local
topological properties are accumulated to explicitly reveal the global topological
arrangement of the data. These neurons obey the simple Hebbian-type learning rule,
and, depending on their shape and base functions, can reveal configurations even
among close and partially overlapping clusters.

The paper first outlines the concept of the proposed enhancement in light of
existing work, and then provides a mathematical formulation for analytic geometric
neurons with polynomial base functions. We show that a classic neuron is a first-order
case of the geometric neuron, and the second-order neuron corresponds to the well-
established ellipsoidal (Mahalanobis) metric neuron. We describe the neuron itself, its
activation, its learning scheme and then demonstrate its functionality within a net.

2 Shape-Sensitive Neurons

The fundamental property of a shape sensitive neuron is that it is capable of mapping
the local topological and geometrical properties of a data volume because, unlike a
point neuron, it has topological and geometric properties of its own. These properties
are parametric and hence adaptive. Unlike classic networks, the topological structure
of the data is then directly accessible, since the topology of each neuron is known and
simple. A schematic illustration of a network with geometric neurons is shown in
Figure 1(a), where point neurons are replaced by higher-order ‘blob’ neurons which
can take the form of various topological components such as links, forks and volumes,



288         H. Lipson and H.T. Siegelmann

as well as of ordinary point neurons. Four actual shape sensitive neurons are shown in
Figure 1(b).

High order neurons are defined as neurons which accept input not only from single
inputs, but also from combinations of inputs, such as sets of inputs multiplied to
various orders. The use of high order neurons in general is not new. High order
neurons are generally associated with more degrees of freedom rather than explicit
topological properties. Explicit geometric properties have been introduced for specific
cases of prototype-based clustering and competitive neural networks. Gustafson and
Kessel (1979) used the covariance matrix to capture ellipsoidal properties of clusters.
Davé (1989) used fuzzy clustering with a non-Euclidean metric to detect lines in
images. This concept was later expanded, and Krishnapuram  et al (1995) used
general second-order shells such as ellipsoidal shells and surfaces. For an overview
and comparison of these methods see Frigui and Krishnapuram (1996). Incorporation
of Mahalanobis (elliptical) metrics in neural networks was addressed by Kavuri and
Venkatasubramanian (1993) for fault analysis applications, and by Mao and Jain
(1996) as a general competitive network with embedded principal component analysis
units. Kohonen uses adaptive tensorial weights (Kohonen, 1997) to capture significant
variances in the components of input signals, thereby introducing a weighted
Euclidean distance in the matching law. Abe et al (1997) attempt to extract fuzzy
rules using ellipsoidal units and compare successfully to other rule-extracting
methods. In this paper we explore the possibility of using neurons with general and
explicit geometric properties under direct Hebbian learning. These neurons are not
limited to ellipsoidal shapes.

 

 

Å 

 

(a) (b)

Fig. 1. (a) A schematic illustration of a network with geometric neurons. Point neurons are
replaced by higher-order ‘blob’ neurons that can take the form of various topological
(symbolic) components such as links, forks and volumes, as well as of ordinary point neurons.
(b) Examples of four high order geometric neurons developed in this work, with different
geometric and topological structures, and the data points they represent.

In the following sections we adopt a notation where: x, w are column vectors, W, D
are matrices; xH, WH denote vectors and matrices in homogeneous representation
(described later), x(j), D(j) - the jth vector/matrix corresponding to the jth neuron/class; x1,
Dij - element of a vector/matrix; m - the order of neuron; d - the dimensionality of the
input; N - the size of the layer (the number of neurons).
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3 A High-Order Neuron with Polynomial Base Functions

In classical self-organizing networks, each neuron j is assigned a synaptic weight
vector w(j). The winning neuron j(x) in response to an input x is the one showing the
highest correlation with the input, i.e. neuron j for which w(j)Tx is the largest. Note that
when the synaptic weights w(j) are normalized to a constant Euclidean length, then the
above criterion becomes identical to the minimum Euclidean distance matching
criterion. However, the use of a minimum-distance matching criterion incorporates
several difficulties. The minimum distance criterion implies that the features of the
input domain are spherical, i.e., matching deviations are considered equally in all
directions, and distances between features must be larger than the distances between
points within a feature.

These aspects preclude the ability to detect higher order, complex or ill-posed
feature configurations and topologies, as these are based on higher geometrical
properties such as directionality and curvature. This constitutes a major difficulty,
especially when the input is of high dimensionality, where such configurations are
difficult to visualize. Complex clusters may require complex metrics for separation.

The modeling constraints imposed by the maximum correlation matching criterion
stem from the fact that the neuron’s synaptic weight w(j) has the same dimensionality
as the input x , i.e., the same dimensionality as a single point in the input domain,
while in fact the neuron is modeling a cluster of points which may have higher order
attributes such as directionality and curvature. We shall therefore refer to the classic
neuron as a ‘first-order’ (zero degree) neuron, due to its correspondence to a point in
multidimensional space.

Second Order

To circumvent this restriction, we augment the neuron with the capacity to map
additional geometric and topological information. For example, as the first-order is a
point neuron, the second-order case will correspond to orientation and size
components, effectively attaching a local oriented coordinate system with non-
uniform scaling to the neuron center and using it to define a new distance metric.
Thus each second-order neuron will represent not only the mean value of the data
points in the cluster it is associated with, but also the principal directions of the cluster
and the variance of the data points along these directions. Intuitively, we can say that
rather than defining a sphere, the second-order distance metric now defines a multi-
dimensional oriented ellipsoid. After some mathematical manipulation (Gustafson and
Kessel, 79), the second order information (orientation and scaling) can be shown to
reside entirely in the correlation matrix R of the zero-mean data, and the matching
criterion becomes

( ) ( ) ( )i j Nj
j T jx x w R x w= − −





=−arg min , , , ,( ) ( )1 1 2 K (1)

This criterion also corresponds to the term used in the maximum likelihood
Gaussian classifier (Duda and Hart, 73). As it stands, Eq. (1) requires separate
tracking the orientation and size information, in R(j), and the position in w(j). For a
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more systematic treatment, we combine these two coefficients into one expanded
covariance denoted RH

(j) in homogenous coordinates (Faux and Pratt, 81), as
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This representation retains the notion of maximum correlation, and for
convenience, we now call RH

-1 the synaptic tensor. Note that this step is based on the
fact that the eigenstructure of the extended correlation matrix RH

(j) in homogeneous
coordinates corresponds to the principal directions and average (i.e. both second-order
and first-order) properties of the cluster accumulated in RH

(j). This property permits
extension to higher order tensors, where direct eigenstructure analysis is not well
defined. The transition into homogeneous coordinates also dispensed with the need to
zero-mean the correlation data.

Digressing for a moment, we recall that the classic neuron possesses a synaptic
weight vector w(j) which corresponds to a point in the input domain. The synaptic
weight w(j) can be seen to be the first order average of its signals, i.e., w(j)=SxH (the last
element xH (d+1)=1 of the homogeneous coordinates has no effect in this case). The
shape-sensitive neurons hold information regarding the linear correlations among the
coordinates of data points represented by the neuron, by using RH

(j)=S xHxH

T. Each
element of RH is thus a proportionality constant relating two specific dimensions of
the cluster.

Higher Orders

The second-order neuron can be regarded as a second-order approximation of the
corresponding data distribution. We may consequently introduce an mth-order shape
sensitive neuron capable of modeling a d-dimensional data cluster to an mth-order
approximation. For example, a third-order neuron is capable of storing not only the
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principal directions and size of the d-dimensional data cluster, but also its curvatures
along each of these axes; hence, it is capable of matching the topology of, say, a Y-
shaped fork.

In order to obtain mth-order components of the data cluster, we use an analogy
between eigenstructure decomposition and least-squares fitting. The analogy holds
that the principal directions of a data cluster (its eigenvectors) correspond to the
normals of the orthogonal set of best-fit hyperplanes through the data set, and the
eigenvalues correspond to the variances of the data from those hyperplanes. In
homogeneous coordinates, the hyperplanes contain also an offset, and hence each
homogeneous eigenvector corresponds to the coefficients of the corresponding
hyperplane equation. Extending this analogy to higher orders, the higher principal
components of the cluster (say, the principal curvatures) correspond to the
eigentensors of higher-order correlation tensors in homogeneous coordinates. The
neuron is therefore represented by a 2(m-1)-dimensional tensor of rank d+1, denoted
by Z(j)³§(d+1)�...�(d+1). The factor of 2 is introduced by the squared error used by the least-
squares method. The tensor is created by successive ‘outer products’ of the
homogeneous vector xH by itself.

)1(2)( −= m
H

j
H xZ (4)

In practice, in order to extract the winner neuron it is only necessary to determine
the amount of correlation between an input and the tensors. As in Eq. (3), in higher
orders too this amounts to multiplication of the input xH by the tensor.

The exponent consists of the factor (m-1), which is the degree of the
approximation, and a factor of 2 since we are performing auto-correlation so the
function is multiplied by itself. In analogy to reasoning that lead to Eq. (3), each
eigenvector (now an eigentensor of order m-1) corresponds to the coefficients of a
principal curve, and multiplying it by an input points produces an approximation of
the distance of that input point from the curve. Consequently, the inverse of the tensor
ZH

(j) can then be used  to compute the high-order correlation of the signal with the
nonlinear shape neuron, by simple tensor multiplication:

( ) Njxi m
H

j
Hj ,,2,1,minarg 11)( K=⊗= −−

Zx (5)

where © denotes tensor multiplication. Note that the covariance tensor can only be
inverted if its order is an even number, as satisfied by Eq. (4). Note also that
amplitude operator is carried out by computing the root of the sum of the squares of
the elements of the argument. The computed metric is now not necessarily spherical
and may take various other forms.

In practice however, high-order tensor inversion is not directly required. To make
this analysis simpler, we use a Kronecker notation for tensor products (see Graham,
1981). Kronecker tensor product ‘flattens out’ the elements of X©Y into a large
matrix formed by taking all possible products between the elements of X and those of
Y. For example, if X is a 2 by 3 matrix, then X©Y is
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where each block is a matrix of the size of Y. In this notation, the internal structure of
higher-order tensors is easier to perceive and their correspondence to linear regression
of principal polynomial curves is revealed. Consider, for example, a fourth order
covariance tensor of the vector x={x,y}. The fourth-order tensor corresponds to the
simplest non-linear neuron according to Eq. (4), and takes the form of the 2�2�2�2
tensor



















=







⊗








=⊗=⊗⊗⊗

43322

322223

322223

22334

2

2

2

2

yxyxyyx

xyyxyxyx

xyyxyxyx

yxyxyxx

yxy

xyx

yxy

xyx
RRxxxx (7)

The homogeneous version of this tensor includes also all lower-order permutations
of the coordinates of xH={x,y,1}, namely, the 3�3�3�3 tensor
















⊗
















===

11

,,, 2

2

2

2

)4(

yx

yyxy

xxyx

yx

yyxy

xxyx

HHHHHHH R,RxxxxZ (8)

Extracting Symbolic Rules

It is immediately apparent that the above matrix corresponds to the matrix to be
solved for finding a least squares fit of a conic section equation
ax2+by2+cxy+dx+ey+f=0 to the data points. Moreover, the set of eigenvectors of this
matrix corresponds to the coefficients of the set of mutually orthogonal best-fit conic
section curves that are the principal curves of the data. This notion adheres with
Gnanadesikan’s method for finding principal curves (Gnanadesikan, 1977).  Now,
substitution of a data point into the equation of a principal curve yields an
approximation of the distance of the point from that curve, and the sum of squared
distances amounts to the term evaluated in Eq. (5). Note that each time we increase
complexity, we are seeking a set of principal curves of one degree higher. This
implies that the least-squares matrix needs to be two degrees higher (because it is
minimizing the squared error), thus yielding the coefficient 2 in the exponent of Eq.
(4) for the general case. Figure 2 shows a cluster of data points and one of their
eigentensors.

Rule extraction is performed as follows: First, the synaptic tensor of each neuron is
analyzed to extract its eigentensors, which are half the order of the synaptic tensor.
The terms of each eigentensor define the coefficients of a polynomial curve, such as
the one shown in Figure 2 (b). Distance from this polynomial curve is one of the
clustering metrics used by this neuron, and hence can be used as a symbolic rule for
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classification of the associated data points. The algebraic rule can thus be directly
extracted analytically.

(a) (b) (c)

Fig. 2.  (a) The cluster of points, (b) one of the six eigentensors, and (c) the best-fit 3rd-order 2D
volume corresponding to a unit circle in the space spanned by the six orthogonal eigentensors.

4 Hebbian Learning for High-Order Neurons

In order to show that higher-order shapes are a direct extension of classic neurons, we
show that they are also subject to simple Hebbian learning. Following an
interpretation of Hebb’s postulate of learning, synaptic modification (i.e., learning)
occurs when there is a correlation between presynaptic and postsynaptic activities.
We have already shown in Eq. (3) above that (a) the presynaptic activity xH and
postsynaptic activity of neuron j coincide when the synapse is strong, i.e. RH

(j)-1xH is
minimum. We now proceed to show that, in accordance with Hebb’s postulate of
learning, (b) it is sufficient to incur self-organization of the neurons by increasing
synapse strength when there is a coincidence of presynaptic and postsynaptic signals.

In order to provide quality (b) above, we need to show how self organization is
obtained merely by increasing RH

(j), where j is the winning neuron. As each new data
point arrives at a specific neuron j in the net, the synaptic weight of that neuron is
adapted by the incremental corresponding to Hebbian learning,

( ) ( ) ( ) )1(2)()()( 1
−+=+ mj

H
j

H
j

H kkk xZZ η (9)

where k is the iteration counter and h(k) is the iteration-dependent learning rate
coefficient. It should be noted that in Eq. 12, ZH

(j) becomes a weighted sum of the input
signals xH

2(m-1) (unlike RH in Eq. 10, which is a uniform sum). The eigenstructure
analysis of a weighted sum still provides the principal components under the
assumption that the weights are uniformly distributed over the cluster signals. This
assumption holds true if the process generating the signals of the cluster is stable over
time - a basic assumption of all neural network algorithms (Bishop, 1997). In practice
this assumption is easily acceptable, as will be demonstrated in the following sections.

In principle, continuous updating of the covariance tensor may create instability in
a competitive environment, as a winner neuron becomes more and more dominant. To
force competition, the covariance tensor can be normalized using any of a number of
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factors dependent on the application, such as the number of signals assigned to the
neuron so far, or the distribution of data among the neuron (forcing uniformity). Some
basic criteria are discussed in (Lipson and Siegelmann, 1999).

5 Implementation

The proposed neuron has been implemented both in an unsupervised and in a
supervised setup. High order tensor multiplications have been performed in practice
by ‘flattening out’ the tensors using Kroneker’s tensor product notation. Briefly,
unsupervised learning is attained by letting randomly initialized neurons compete
over input data, using the Hebbian learning and 'winner takes all' principle as
described earlier. Supervised learning is attained by training one neuron per input
class with inputs of that class only, and then cross-validating the results. The precise
implementation is described in (Lipson and Siegelmann, 1999). Below we
demonstrate some results.

Figure 3(a) shows three 2nd order neurons (ellipsoids) that self organized to
decompose a point set into three natural groups. Note the correct decomposition
despite the significant proximity and partial overlap of the cluster, a factor which
usually ‘confuses’ classic networks. Figures 3(b,c) show decompositions of point sets
using 3rd order neurons, capable of modeling the data with more complex shapes than
mere ellipses. Note how the direct determination of the area of overlap permits
explicit modeling of uncertainty or ambiguity in the data domain, a factor which is
crucial for symbolic understanding. Figure 4 shows three instances of different data
topologies, modeled using three 2nd order neurons.

(a) (b) (c)

Fig. 3. Self classification of point clusters, (a) 2nd (elliptical), (b,c) 3rd order.
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(a) (b) (c)

Fig. 4. Point clusters with various topologies and their interpretation, (a) string, (b) hole, (c)
fork. Analysis shown was completed after single pass.

The geometric neurons have also been tested on the 4-dimensional IRIS Data
benchmark (Anderson, 1939) both in unsupervised and in supervised modes. Out of
150 flowers, the networks misclassified 3 (unsupervised) and 0 flowers (supervised),
respectively1. Supervised learning was achieved by training each neuron on its
designated class separately with 20% cross validation. Tables 1 and 2 summarize the
results.

Table 1. Comparison of self-classification results for IRIS data. (Blank cells correspond to
unavailable data)

Method Epochs # misclassified or
unclassified

Super Paramagnetic (Blatt et al, 1996) 25

LVQ / GLVQ (Pal et al, 1993) 200 17
K-Means (Mao and Jain, 1996) 16

HEC (Mao and Jain, 1996) 5

2nd-order Unsupervised 20 4

3rd-order Unsupervised 30 3
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Table 2. Supervised classification results for IRIS data. Our results after one training epoch,
with 20% cross validation. Averaged results for 250 experiments. (Blank cells correspond to
unavailable data)

Order Epochs # misclassified
Average Best

3-Hidden-Layer N.N. (Abe et al, 1997)
1000

2.2 1

Fuzzy Hyperbox (Abe et al, 1997) 2

Fuzzy Ellipsoids (Abe et al, 1997) 1000 1

2nd-order Supervised 1 3.08 1

3rd-order Supervised 1 2.27 1

4th-order Supervised 1 1.60 0

5th-order Supervised 1 1.07 0

6th-order Supervised 1 1.20 0

7th-order Supervised 1 1.30 0

6 Conclusions and Further Research

In this paper, we discussed the use of high-order geometric neurons and demonstrated
their practical use for modeling the principal structure of spatial distributions.
Although high-order neurons do not directly correspond to neurobiological details, we
believe that they can provide powerful symbolic modeling capabilities. In particular,
they exhibit useful properties for correctly handling partially overlapping clusters, an
occurrence that may represent a key symbolic property. Moreover, when an entire
shape or ‘rule’ is encoded into a single neuron its easy to find a minimal set of ‘key
examples’ that can be used to induce the rule in a learning system. For example, the
eigentensors of the synaptic tensor appear to be such a set.

The use of geometric neurons raises some further practical questions, which have
not been addressed in this paper, such as selecting the number of neurons for a
particular task (network size), the cost implication of the increased number of degrees
of freedom, and network initialization. It is also necessary to investigate the
relationship between the values of the synaptic tensor and the shapes it may acquire.
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