Project updates

Everything on schedule?

Requirements specifications are due
Thursday, Feb 14, at noon

Submit on Moodle, 1 per group

AWS funding has come through! Each team
can count on S800 in free AWS credit.

Lecture outline

Why is teamwork hard?
Not getting into each other’s way

Positive teamwork

Communication: powerful but costly!

Communication requirements increase with
increasing numbers of people

Everybody to everybody: quadratic cost

Every attempt to communicate is a chance to
miscommunicate

But not communicating will guarantee
miscommunication

Working in Teams

TEAMWORK

Large ambitious goals usually require that people work together.

Team pros and cons

* Benefits
— Attack bigger problems in a short period of time
— Utilize the collective experience of everyone

* Risks
— Communication and coordination issues
— Groupthink: diffusion of responsibility; going along
— Working by inertia; not planning ahead
— Conflict or mistrust between team members

What about conflicts?

| What can cause conflicts? |

* Two people want to work on the same file
— Google docs lets you do that

But...

* What about same line?

* What about timing?

* What about design decisions?

Version control Centralized version control

* (old model)
* Examples: Concurrent Versions System (CVS)

Version control aims to allow Subversion (SVN)
multiple people to work in :
Master Repository
parallel.
Demetre’s Vs
laptop
checkout desktop
checkout
Demetre’s Yuriy’s
desktop laptop
checkout Lee’s checkout
checkout
Doing work

Problems with centralized VC

Master Repository

Demetre’ — * What if | don’t have a network connection?
aptop

checkout sl iz
checkout

S lapton * What if | am implementing a big change?

checkout Lee’s checkout
checkout

. . . . 5
« 1 update my checkout (working copy) What if | want to explore project history later

* | edit

* | update my checkout again

* | merge changes if necessary

* | commit my changes to the Master

Distributed version control Distributed version control model

Master Repository

(new model)
* Examples: Mercurial (Hg), Git, Bazaar, Darcs, ...

Demetre’s Laptop Yuriy’s Desktop

Repository Repository
* Local operations are fast (and possible) . v
Demetre’s Desktop Yuriy’s Laptop
* History is more accurate Demetre’s Speo See e e
uriy
. .) . desk
» Merging algorithms are far better Lee’s Repository et

Demetre’s Yuriy’s
Desktop laptop
checkout checkou
Lee’s
checkout

Doing work History view (log)

master
MelindaQ__ Bill
Master Reposit; . . M
el + Bill and Melinda work at the :
* | pull from the Master same time W
* | update my checkout Yuriy's Desktop Th
. Repository . . F)
* ledit * At the end, all repositories have
* | commit the same, rich history T
* | pull from the Master eskion ¥:/1
* | merge tips if necessary and commit again L F
* | push my changes to the Master "T"
w

The Gates conflict

What do conflicts look like? f/T\b
M
Crystal tool
The Gates conflict The Gates conflict
M
T

The Gates conflict The Gates conflict

M M
T T
w w
Th Th
F
The Gates conflict The Gates conflict
(@) (@)
M M
T T
w w
Th Th
F) F)
M M
T T
w
Th
The Gates conflict The Gates conflict
(@) (@)
M M
T T
w w
Th Th
F) F)
M M
T T
w w
Th Th
F F
M
T

The Gates conflict The Gates conflict

O @)
M M
T T
w w
Th Th
F D) F D)
M M
T T
w w
Th Th
F F
M M
T T
w w
The information was all there, but the developers didn't know it.J
What could well-informed developers do? What could well-informed developers do?
O
M M
T . . T . .
e avoid conflicts W e avoid conflicts
Th
F b}
M
T
w
Th o become aware of conflicts earlier
F
Introducing Crystal: a proactive conflict detector Introducing Crystal: a proactive conflict detector

DEMO DEMO

7
@ Crystal - George E@g

File About

master Paul Ringo John

memsf T R 4

master Jeff Roy Bob Tom
Handle
with Care $ TT

- new relati lip will be AHEAD
itters: George and Tom

http://crystalvc.googlecode.com

Speculative analysis in collaborative development

incorporate from Melinda

incorporate from master
incorporate to master

current program analyze

merge
compile
test

inform developer

collaborative relationships

Reducing false positives in conflict prediction

Collaborative awareness

o Palantir [Sarma et al. 2003]
e FASTDash [Biehl et al. 2007]
@ Syde [Hattori and Lanza 2010]

o CollabVS [Dewan and Hegde 2007]
o Safe-commit [Wloka et al. 2009]
@ SourceTree [Streeting 2010]

Crystal analyzes concrete artifacts,
eliminating false positives and false negatives.

Are textual collaborative conflicts a real problem?

histories of 9 open-source projects:

size: 26K-1.4MSLoC
developers: 298
versions: 140,000

Perl5, Rails, Git, jQuery, Voldemort,
MaNGOS, Gallery3, Samba, Insoshi

Reducing false positives in conflict prediction

Collaborative awareness

o Palantir [Sarma et al. 2003]
e FASTDash [Biehl et al. 2007]
@ Syde [Hattori and Lanza 2010]

o CollabVS [Dewan and Hegde 2007]
o Safe-commit [Wloka et al. 2009]
@ SourceTree [Streeting 2010]

Utility of conflict detection

o Are textual collaborative conflicts a real problem?
o Can textual conflicts be prevented?

@ Do build and test collaborative conflicts exist?

Are textual collaborative conflicts a real problem?

0
histories of 9 open-source projects:
size: 26K-1.4MSLoC
developers: 298
versions: 140,000

Perl5, Rails, Git, jQuery, Voldemort,
MaNGOS, Gallery3, Samba, Insoshi

S42m3is4dzn3isqaz

Are textual collaborative conflicts a real problem? Are textual collaborative conflicts a real problem?

0 0
How frequent are textual conflicts? How frequent are textual conflicts?
16% of the merges have textual conflicts.
- -+

Are textual collaborative conflicts a real problem? Are textual collaborative conflicts a real problem?

Sd42mn3isazniisqaz
Sd42mn3isazniisqaz

M How frequent are textual conflicts? M How frequent are textual conflicts?

T . T .

W 16% of the merges have textual conflicts. W 16% of the merges have textual conflicts.

Th Th

F How long do textual conflicts persist? F How long do textual conflicts persist?

l\1/_| l\1/_| Conflicts live a mean of 9.8 and median of 1.6 days.
w W The worst case was over a year.

Th Th

F F

M M

T T

w w
Are textual collaborative conflicts a real problem? Are textual collaborative conflicts a real problem?

Q Q

M How frequent are textual conflicts? M How frequent are textual conflicts?

T . T .

W 16% of the merges have textual conflicts. W 16% of the merges have textual conflicts.

Th Th

F How long do textual conflicts persist? F How long do textual conflicts persist?

l\1/_| Conflicts live a mean of 9.8 and median of 1.6 days. l\1/_| Conflicts live a mean of 9.8 and median of 1.6 days.
W The worst case was over a year. W The worst case was over a year.

Th Th

F How long do textually-safe merges persist? F How long do textually-safe merges persist?
"TA "TA Textually-safe merges live a mean of 11.0 and
W W median of 1.9 days.

Can textual conflicts be prevented? Can textual conflicts be prevented?

Where do textual conflicts come from? Where do textual conflicts come from?

93% of textual conflicts developed from safe merges.

e

Can textual conflicts be prevented? Do build and test collaborative conflicts exist?

Where do textual conflicts come from?

93% of textual conflicts developed from safe merges. ‘ conflicts ‘ safe
program ‘ textual ‘ build ‘ test ‘ merges
Git 17% | <1% | 4% 79%
8% 4% | 28% 61%
17% | 10% | 3% 69%

%
Perl5
Voldemort
G.

Does merged code fail to build or fail tests?

One in three conflicts are build or test conflicts.

The information Crystal computes can help prevent conflicts. J

What VC does the cloud provide? Lecture outline
* code.google.com has SVN and Hg * Why is teamwork hard?
* bitbucket.org has Hg and git
* github.com has git * Not getting into each other’s way

* sourceforge.net has SVN, CVS, git, Hg, Bazaar

=>»Positive teamwork
* You can run whatever you want on EDLab

Team structures Common SW team responsibilities

* Tricky balance among * Project management
— progress on the project/product o

— expertise and knowledge
— communication needs

Functional management
* Developers: programmers, testers, integrators

- - * Lead developer/architect (“tech lead”)
“A team is a set of people with complementary

skills who are committed to a common
purpose, performance goals, and approach for
which they hold themselves mutually
accountable.” * Key: Identify and stress roles and responsibilities

— Katzenbach and Smith

* These could be all different team members, or
some members could span multiple roles.

Issues affecting team success Team structure models

Presence of a shared mission and goals N
* Dominion model
Motivation and commitment of team members — Pros) o
* clear chain of responsibility
* people are used to it
— Cons:
* single point of failure at the commander
* less or no sense of ownership by everyone

Experience level
— and presence of experienced members

Team size
— and the need for bounded yet sufficient communication * Communion model
— Pros
Team organization * a community of leaders, each in his/her own domain
— and results-driven structure C. inherent sense of ownership
— Cons

Reward structure within the team * people aren't used to it (and this scares them)

— incentives, enjoyment, empowerment (ownership, autonomy)

Team leadership Surgical/Chief Programmer Team
[Baker, Mills, Brooks]

l Chief: all key decisions

Copilot: chief’s assistant

* Who makes the important product-wide
decisions in your team?
— One person?

Administrator: manages people, hardware, resources

Editor: edits chief’s documentation

— All, by unanimous consent?
— Other options?...

Secretaries (2): for administrator and for editor

Program clerk: keeps all project records

Toolsmith: builds programming tools for chief

— Is this an unspoken or an explicit agreement
among team members?

Tester: develops and runs unit and system tests

Language lawyer: programming language expert, advises chief

* Program Manager. Leads the technical side of a

Microsoft’s team structure

[microsoft.com]

product development team, managing and
defining the functional specifications and defining
how the product will work.

Software Design Engineer. Codes and designs .

new software, oft

en collaborating as a member

of a software development team to create and .

build products.

Software Test Engineer. Tests and critiques .
software to assure quality and identify potential

improvement opportunities and projects.

Common factors in good teams

Clear roles and respo

Toshiba Software Factory (v. matsumoto]

Late 1970’s structure for 2,300 software
developers producing real-time industrial
application software systems (such as traffic
control, factory automation, etc.)

Unit Workload Order Sheets (UWOS) precisely

define a software component to be built

Assigned by project management to developers

based on scope/size/skills needed

Completed UWOS fed back into management

system

Highly measured to allow for process improvement

Motivation

What motivates you?

nsibilities

— Each person knows and is accountable for their work

Monitor individual performance

— Who is doing what, are we getting the work done? .

Effective communication system

— Available, credible, t

racking of issues, decisions

— Problems aren't allowed to fester ("boiled frogs")

Fact based decisions
— Focus on the facts, n

ot the politics, personalities, ...

De-motivators

* What takes away your motivation?

— Micro-management
— Lack of ownership

or no management

— Lack of effective reward structure
* Including lack of simple appreciation for job well done

Excessive pressure a
Allowing "broken wi

nd resulting "burnout"
ndows" to persist

— Lack of focus in the overall direction

— Productivity barriers
* Asking too much; not a

Too little challenge

llowing sufficient learning time; using the wrong tools

Work not aligned with personal interests and goals

— Poor communication inside the team

Achievement
Recognition
Advancement

Salary

Possibility for growth
Interpersonal relationships
— Subordinate

— Superior

— Peer

Status

Technical supervision
opportunities

Company policies
Work itself

Work conditions
Personal life

Job security
Responsibility
Competition
Time pressure
Tangible goals
Social responsibility
Other?

