SRS submitted!

* Comments? Questions?
* Congratulations.

...but the fun is just beginning:

* Design specification due
Feb 26, noon, on Moodle

2/13/13

Architecture

MIT Stata Center by Frank Gehry

Why architecture?

“Good software architecture makes

The basic problem

How do you bridge the gap
between requirements
ﬂ and code?

One answer

a miracle happens

A better answer

Requirements

Provides a high-level
framework to

build and evolve the
system

What does an architecture look like?

Box-and-arrow diagrams

T
N VVery common and hugely valuable. s
But, what does a box represent?
an arrow?
a layer?

adjacent boxes?

Notifications

An architecture:
components and connectors

* Components define the basic computations
comprising the system and their behaviors
— abstract data types, filters, etc.

e Connectors define the interconnections between
components

— procedure call, event announcement,
asynchronous message sends, etc.

* The line between them may be fuzzy at times

— Ex: A connector might (de)serialize data, but can it
perform other, richer computations?

A good architecture

Satisfies functional and performance
requirements

Manages complexity
Accommodates future change
Is concerned with

— reliability, safety, understandability, compatibility,
robustness, ...

Divide and conquer

« Benefits of decomposition:
— Decrease size of tasks
— Support independent testing and analysis
— Separate work assignments
— Ease understanding
* Use of abstraction leads to modularity

— Implementation techniques: information hiding,
interfaces

* To achieve modularity, you need:
— Strong cohesion within a component
— Loose coupling between components
— And these properties should be true at each level

Qualities of modular software

-3

[
composable g0
— pieces are useful and can be combined

decomposable
— can be broken down into pieces

understandable
— one piece can be examined in isolation

has continuity
— change in regs affects few modules

protected / safe
— an error affects few other modules

Interface and implementation

* public interface: data and behavior of the object that
can be seen and executed externally by "client" code

* private implementation: internal data and methods in
the object, used to help implement the public
interface, but cannot be directly accessed

* client: code that uses your class/subsystem =

Example: radio =

* public interface: the speaker, volume buttons, station dial

* private implementation: the guts of the radio; the
transistors, capacitors, voltage readings, frequencies, etc.
that user should not see

2/13/13

UML diagrams

* UML = universal modeling language

* A standardized way to describe (draw)
architecture

* Widely used in industry

Properties of architecture

* Coupling

* Cohesion

* Style conformity
* Matching

* Errosion

Loose coupling

« coupling assesses the kind and quantity of
interconnections among modules

* Modules that are loosely coupled (or uncoupled)
are better than those that are tightly coupled

* The more tightly coupled two modules are, the
harder it is to work with them separately

Tightly or loosely coupled?

nnnnn

. |User Interface| | Graphics

,,,,,

aaaaa

sssss

| enae

Data Storage -1-

aaaaaa
- | e

- 4
o . s .
Business Rules % Enterprise Level Tools
; e 4‘ zzzzz

| e 1]

Tightly or loosely coupled?

[User Interface| == Graphics|
I — |

«««««
rrrrrr

«««««

Data Storage| =« [Application Level Classes|
1 \

l— —

“enar

zzzzz

zzzzz

Strong cohesion

* cohesion refers to how closely the operations
in a module are related

« Tight relationships improve clarity and
understanding

» Classes with good abstraction usually have
strong cohension

* No schizophrenic classes!

2/13/13

Strong or weak cohesion?

class Employee {
public:

FullName GetName() const;
Address GetAddress() const;
PhoneNumber GetWorkPhone() const;

bool IsJobClassificationValid(JobClassification jobClass);
bool IsZipCodeValid (Address address);
bool IsPhoneNumberValid (PhoneNumber phoneNumber);

‘éqIQuery GetQueryToCreateNewEmployee() const;
SqlQuery GetQueryToModifyEmployee() const;
SqlQuery GetQueryToRetrieveEmployee() const;

An architecture helps with

System understanding: interactions between modules
Reuse: high-level view shows opportunity for reuse

Construction: breaks development down into work items;
provides a path from requirements to code

Evolution: high-level view shows evolution path
Management: helps understand work items and track progress

Communication: provides vocabulary; pictures say 103 words

Architectural style

« Defines the vocabulary of components and connectors
for a family (style)
« Constraints on the elements and their combination

— Topological constraints (no cycles, register/announce
relationships, etc.)

— Execution constraints (timing, etc.)
* By choosing a style, one gets all the known properties
of that style (for any architecture in that style)

— Ex: performance, lack of deadlock, ease of making
particular classes of changes, etc.

Styles are not just boxes and arrows

« Consider pipes & filters, for example (Garlan and Shaw)
— Pipes must compute local transformations
— Filters must not share state with other filters
— There must be no cycles
« If these constraints are violated, it’s not a pipe & filter system
— One can’t tell this from a picture
— One can formalize these constraints

‘ scan H parse H optimize H generate ‘

The design and the reality

* The code is often less clean than the design

* The design is still useful
— communication among team members

— selected deviations can be explained more concisely and
with clearer reasoning

Architectural mismatch

* Mars orbiter loss
NASA lost a 125 million Mars orbiter because one
engineering team used metric units while another
used English units for a key spacecraft operation

2/13/13

Architectural mismatch

* Garlan, Allen, Ockerbloom tried to build a toolset to support software
architecture definition from existing components
— OODB (0BST)
— graphical user interface toolkit (Interviews)
— RPC mechanism (MIG/Mach RPC)
— Event-based tool integration mechanism (Softbench)
* It went to hell in a handbasket, not because the pieces didn’t work, but
because they didn’t fit together
~ Excessive code size
~ Poor performance
~ Needed to modify out-of-the-box components (e.g., memory allocation)
~ Error-prone construction process
* Architectural Mismatch: Why Reuse Is So Hard. IEEE Software 12, 6 (Nov.
1995)
* Architecture should warn about such problems (& identify problems)

Views

A view illuminates a set of top-level design decisions

* how the system is composed of interacting parts

* where are the main pathways of interaction

* key properties of the parts

* information to allow high-level analysis and
appraisal

Importance of views

Multiple views are needed to understand the
different dimensions of systems

_ “"‘,..l Cl / = |Packaging
Functilonal et Requirements
Requirements Design View Implementation

View
=

Use Case View

Classes, Interfaces,
Collaborations

.\z,l
Performance
(execution)
Requirements

Installation

Process View Requirements

Deployment
View

Active Classes Nodes

Booch

Page

J Request
r——y

Web Browser

Booch

Model-View-Controller

sees/ uses
Separates the application
object (model) from the
way it is represented to

the user (view) from the
updates manipulates| way in which the user
@ controls it (controller).

Application

2/13/13

Pipe and filter

Pipe — passes the data

% top | grep SUSER | grep acrobat :>O

Filter - computes on the data

Each stage of the pipeline acts independently of
the others.

Can you think of a system based on this
architecture?

Blackboard architectures

The knowledge sources: separate,
independent units of application

! Simple Blackboard
dependent knowledge. No direct

interaction among knowledge sources
The blackboard data structure: problem-
solving state data. Knowledge sources
make changes to the blackboard that
lead incrementally to a solution to the
problem.

Control: driven entirely by state of
blackboard. Knowledge sources respond

opportunistically to changes in the E —
blackboard.
Blackboard systems have traditit been used for icati requiring

complex interpretations of signal processing, such as speech and pattern
recognition.

Hearsay-Il: blackboard

Hearsay-II Instance of Blackboard

