Regression testing

* Whenever you find a bug
— Reproduce it (before you fix it!)
— Store input that elicited that bug
— Store correct output
— Put into test suite
— Then, fix it and verify the fix
* Why is this a good idea?
— Helps to populate test suite with good tests

— Protects against regressions that reintroduce bug
It happened once, so it might again

3/29/13

Rules of Testing

* First rule of testing: Do it early and do it often
Best to catch bugs soon, before they have a chance to hide.
Automate the process if you can
Regression testing will save time.

* Second rule of testing: Be systematic

If you randomly thrash, bugs will hide in the corner until you're
gone
Writing tests is a good way to understand the spec
Think about revealing domains and boundary cases
If the spec is confusing = write more tests
Spec can be buggy too
Incorrect, incomplete, ambiguous, and missing corner cases
When you find a bug = fix it first and then write a test for it

Testing summary
* Testing matters
— You need to convince others that module works
* Catch problems earlier
— Bugs become obscure beyond the unit they occur in
* Don't confuse volume with quality of test data
— Can lose relevant cases in mass of irrelevant ones

— Look for revealing subdomains (“characteristic
tests”)

* Choose test data to cover
— Specification (black box testing)
— Code (glass box testing)

* Testing can't generally prove absence of bugs
— But it can increase quality and confidence

Debugging

Ways to get your code right

* Validation
— Purpose is to uncover problems and increase confidence
— Combination of reasoning and test
* Debugging
— Finding out why a program is not functioning as intended
* Defensive programming
— Programming with validation and debugging in mind
* Testing # debugging
— test: reveals existence of problem
— debug:  pinpoint location + cause of problem

A bug — September9 1947

US Navy Admiral Grace Murray Hopper, working on Mark | at Harvard

94 Aael; D i
0610 Oakam shavol él-)./m 9.037 w7 015
/000 . ;\‘1?‘3 ~ ondom S 9087 ¥YC 9T ok
130c o) me -me  EVSTERL 6 74/5 525055
63 PRO> 2. 130yr0ys
con ek A :::éy‘m y
RS -r o~ 033 £ :1,,,] Jeod i
o
; [
1700, | Sarhed NG HEN
LAY [ RARPR o

f:fr”l s

@elw\*ﬁb ZH e | iF

\mufﬂm r»\n‘-\

o buq beiny founk.




A Bug’s Life

* Defect — mistake committed by a human

* Error —incorrect computation

* Failure — visible error: program violates its
specification

* Debugging starts when a failure is observed
— Unit testing
— Integration testing
— In the field

3/29/13

Defense in depth

1. Make errors impossible

— Java makes memory overwrite bugs impossible
2. Don’tintroduce defects

— Correctness: get things right the first time
3. Make errors immediately visible

— Local visibility of errors: best to fail immediately

— Example: checkRep() routine to check representation invariants
4. Last resort is debugging

— Needed when effect of bug is distant from cause

— Design experiments to gain information about bug
Fairly easy in a program with good modularity, representation hiding,
specs, unit tests etc.
Much harder and more painstaking with a poor design, e.g., with rampant
rep exposure

First defense: Impossible by design

* In the language

— Java makes memory overwrite bugs impossible

* In the protocols/libraries/modules
— TCP/IP will guarantee that data is not reordered
— Biglnteger will guarantee that there will be no overflow

* In self-imposed conventions
— Hierarchical locking makes deadlock bugs impossible

— Banning the use of recursion will make infinite recursion/insufficient
stack bugs go away

— Immutable data structures will guarantee behavioral equality
— Caution: You must maintain the discipline

Second defense: correctness

Get things right the first time
— Don’t code before you think! Think before you code.
— Ifyou're making lots of easy-to-find bugs, you're also making hard-to-
find bugs — don't use compiler as crutch
Especially true, when debugging is going to be hard
— Concurrency
— Difficult test and instrument environments
— Program must meet timing deadlines
Simplicity is key
— Modularity
* Divide program into chunks that are easy to understand
* Use abstract data types with well-defined interfaces
* Use defensive programming; avoid rep exposure
— Specification

* Write specs for all modules, so that an explicit, well-defined contract
exists between each module and its clients

Third defense: immediate visibility

If we can't prevent bugs, we can try to localize them to

a small part of the program

— Assertions: catch bugs early, before failure has a chance to
contaminate (and be obscured by) further computation

— Unit testing: when you test a module in isolation, you can
be confident that any bug you find is in that unit (unless
it's in the test driver)

— Regression testing: run tests as often as possible when
changing code. If there is a failure, chances are there's a
mistake in the code you just changed

* When localized to a single method or small module,

bugs can be found simply by studying the program text

Benefits of immediate visibility

Key difficulty of debugging is to find the code fragment
responsible for an observed problem

— A method may return an erroneous result, but be itself
error free, if there is prior corruption of representation

The earlier a problem is observed, the easier it is to fix

— For example, frequently checking the rep invariant helps
the above problem

General approach: fail-fast
— Check invariants, don't just assume them
— Don't try to recover from bugs — this just obscures them




How to debug a compile

* Multiple passes
— Each operate on a complex IR

Intermediate
Representation

— Lot of information passing

— Very complex Rep Invariant

— Code generation at the end
* Bug types:

— Compiler crashes

— Generated program is buggy

3/29/13

Don't hide bugs

// k is guaranteed to be present in a
inti=0;
while (true) {

if (a[i]==k) break;

i+

}

* This code fragment searches an array a for a value k.
— Value is guaranteed to be in the array.

— If that guarantee is broken (by a bug), the code throws an
exception and dies.

¢ Temptation: make code more “robust” by not failing

Don't hide bugs

// k is guaranteed to be present in a
inti=0;
while (ia.length) {

if (a[i]==k) break;

I++;

}

* Now at least the loop will always terminate
— But no longer guaranteed that a[i]==k
— If rest of code relies on this, then problems arise later

— All we've done is obscure the link between the bug's
origin and the eventual erroneous behavior it causes.

Don't hide bugs

// k is guaranteed to be present in a
inti=0;
while (i<a.length) {

if (a[i]==k) break;

i++;
}
assert (i<a.length) : "key not found";

* Assertions let us document and check
invariants

Abort program as soon as problem is detected

Inserting Checks

* Insert checks galore with an intelligent
checking strategy
— Precondition checks
— Consistency checks
— Bug-specific checks

* Goal: stop the program as close to bug as
possible

Use debugger to see where you are, explore
program a bit

Checking For Preconditions

// k is guaranteed to be present ina
inti=0;
while (i<a.length) {
if (a[il==k) break;

++

.

}

assert (i<a.length) : "key not found";

Precondition violated? Get an assertion!




Downside of Assertions

static int sum(Integer a[], List<Integer> index) {
ints=0;
for (e:index) {
assert(e < a.length, "Precondition violated");
s=s+alel]

return s;
}
Assertion not checked until we use the data
Fault occurs when bad index inserted into list
May be a long distance between fault activation and error detection

3/29/13

checkRep: Data Structure Consistency Checks

static void checkRep(Integer a[], List<Integer> index) {
for (e:index) {
assert(e < a.length, "Inconsistent Data Structure”);
}
}
. Perform check after all updates to minimize
distance between bug occurrence and bug
detection

. Can also write a single procedure to check

ALL data structures, then scatter calls to this
procedure throughout code

Bug-Specific Checks

static void check(Integer a[], List<Integer> index) {
for (eiindex) {
assert(e = 1234, “"Inconsistent Data Structure");
}
}

Bug shows up as 1234 in list
Check for that specific condition

Checks In Production Code

* Should you include assertions and checks in production code?
— Yes: stop program if check fails — don’t want to
take chance program will do something wrong
— No: may need program to keep going, maybe bug
does not have such bad consequences
— Correct answer depends on context!

¢ Ariane 5 — program halted because of overflow in unused value,

exception thrown but not handled until top level, rocket crashes...




