
A Compression-Inspired Framework for Macro Discovery
Francisco M. Garcia

University of Massachusetts

Amherst, Massachusetts, USA

fmgarcia@cs.umass.edu

Bruno C. da Silva

Federal University Rio Grande do Sul

Porto Alegre, Rio Grande, Brazil

bsilva@inf.ufrgs.br

Philip Thomas

University of Massachusetts

Amherst, Massachusetts, Brazil

pthomas@cs.umass.edu

ABSTRACT
In this paper we consider the problem of how a reinforcement

learning agent tasked with solving a set of related Markov decision

processes can use knowledge acquired early on in its lifetime to

improve its ability to more rapidly solve novel tasks. We propose

a three-step framework in which an agent 1) generates a set of

candidate open-loop macros based on samples drawn from near-

optimal policies; 2) evaluates the value of each macro; and 3) selects

a maximally diverse subset of macros that spans the space of poli-

cies typically required for solving tasks in the distribution. Our

experiments show that extending the original primitive action-set

of the agent with the identified macros allows it to more rapidly

learn an optimal policy in unseen, but similar MDPs.

KEYWORDS
Reinforcement Learning; Hierarchical RL; Exploration

1 INTRODUCTION
One of the key aspects of human learning is our ability to construct

building blocks uponwhich we can learn new skills. An infant learn-

ing how to walk may struggle with coordinating basic low-level

motor movements at first. Later on in their life, that person might

decide to learn how to play soccer. They are no longer concerned

with how to walk or even how to run, given that these are skills

they already possess; instead, their focus is on learning new soccer

skills. In other words, a person is typically not required to learn

new behaviors by always directly experimenting with low-level be-

haviors like they used to do as infants; they do, by contrast, simply

bootstrap the knowledge they acquired early on in their lives. This

suggests that it may be beneficial to use particularly useful (e.g. re-

curring) previously-acquired higher-level skills to more efficiently

explore the consequences of an agent’s actions when facing novel

tasks.

In the RL literature, higher-level actions are sometimes called

options or macros. They introduce a bias in the behavior of the

agent, which is key during exploration to efficiently learn how

to solve new problems. Carefully constructed macros have been

shown e.g. to improve learning by allowing an agent to quickly

reach distant areas of the state space during training. However, if

options or macros are not appropriate for the problem at hand, they

may substantially degrade learning [8]. The question this paper

focuses on is: “How can an agent identify and leverage useful macros
for a given class or distribution of problems?”.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 2019, Montreal,
Canada
© 2019 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

https://doi.org/doi

In this work we consider the scenario where an agent is required

to solve large number of different but related tasks, which define

a problem class. We propose a framework that, after the agent has

learned an optimal policy for a few initial tasks, allows it to identify

macros that would help in learning to solve the remaining tasks.

In our approach, after an agent learns optimal (or near-optimal)

policies for a set of training tasks, trajectories from these policies

are sampled to generate, evaluate, and select effective macros for

the specific class of problems at hand.

In this paper we make the following contributions:

• Present a general framework for identifying macro actions

appropriate to the problem class. We posit that useful macros

are pieces of reusable or maximally recurring behaviors.

• Introduce the notion of the value of a macro, which we call

the W-value.

• Introduce a novel approach for evaluating distances between

macros so that, combined with the value of a macro, allows

us to select a subset of macros that is maximally diverse

and spans the space of policies typically required for solving

tasks in the distribution.

2 RELATEDWORK
A critical component that determines the performance of an agent

when learning to solve a new task is its ability to efficiently explore

the state space. Typically, exploration is done through random

walks, although it is known that this strategy scales poorly as the

size of the state space increases [17].

A better approach to exploring the state space, which has become

increasingly popular in the last years, is through options or macros,
[11, 13], which define temporally extended actions. Options are

sub-policies that the agent can invoke in any state s ∈ I and

that can terminate in any state s ∈ T , where I and T define

the initiation and termination set, respectively. Macros, on the

other hand, are their open-loop counterpart and are defined as

a finite-length sequence of actions.
1
These techniques allow the

agent to “commit” to some behavior for an extended period of time,

as opposed to randomly execute actions, and their demonstrated

potential has led to the development of methods for identifying

useful skills or macros to become an active area of research under

the name of skill discovery.
One approach for option discovery is to identify important states

in the transition graph of an MDP and learn policies that would lead

the agent from any region of the state-set to those specific states.

The work byMcGovern and Barto [7] proposes splitting trajectories

into successful and unsuccessful trajectories based on whether they

were able to reach a pre-determined goal state. These trajectories

1
Different works have slight different definitions for macros [8]; in this work we define

them as open-loop finite-length sequences of actions.

https://doi.org/doi

AAMAS’19, May 2019, Montreal, Canada Francisco M. Garcia, Bruno C. da Silva, and Philip Thomas

are then analyzed to identify bottleneck states, and options can be

obtained by learning policies that cause the agent to reach those

bottlenecks. A more recent approach based on a similar principle

is the one presented by Machado et al .[6]. The authors extend the

idea of using proto-value functions [5] to identify states of interest

based on the eigen-values of the transition graph. They are, then,

able to obtain options by learning an optimal policy that allows the

agent to reach each of those states.

There are many other commonly-used approaches to option

discovery that do not rely on finding bottleneck states [1, 3, 9];

however, many of them share the same drawbacks which limit how

reusable the discovered options are: they assume that the transition

graph will be maintained in future tasks. This is in contrast with

our proposed framework, which allows us to extract generally

useful open-loop macros by making minimal assumptions about

the structure of the problem.

In this paper, we aim to develop a framework that is not con-

strained by these limitations. We analyze sample trajectories drawn

from optimal policies to related tasks and use them to obtain open-

loop macro actions that improve learning when facing new tasks

in a given problem class.

3 BACKGROUND AND NOTATION
3.1 Background on Markov Decision Processes
A Markov decision process (MDP) is a tuple,M = (S,A, P ,R,γ ,d0),
where S is the set of possible states of the environment, A is

the set of possible actions that the agent can take, P(s,a, s ′) is the
probability that the environment will transition to state s ′ ∈ S

if the agent executes action a ∈ A in state s ∈ S, R(s,a) is the
real-valued reward received after taking action a in state s , d0 is
the initial state distribution, and γ ∈ [0, 1] is a discount factor for

rewards received in the future.

We use t ∈ {0, 1, 2, . . . ,T } to index the time-step and write St ,
At , and Rt to denote the state, action, and reward at time t . We

assume that T , the horizon, is finite, after which the environment

resets to an initial state drawn from d0. This process defines an
episode and thus we restrict our discussion to episodic MDPs. A

policy, π : S × A → [0, 1], provides a conditional distribution over

actions given each possible state: π (s,a) = Pr(At = a |St = s).
In this paper, we define C, the problem class, as the set of all

related tasks or problems c that an agent may face, where c =
(S,A, Pc ,Rc ,γ ,d

c
0
). In particular, note that we define C such that

all c ∈ C are MDPs sharing the same state-set S and action-set A,

but may have different transition functions Pc , reward functions Rc ,
and initial state distributions dc

0
. For example, Liu et al. [4] showed

how RL can be used to efficiently allocate resources to servers in

the cloud and reduce power usage from collected usage profiles. In

this case C would correspond to the “resource allocation” problem

for servers and each task c ∈ C could refer a specific set of servers

whose resources need to be managed.

A trajectory from a policy π is a sequence of state, action, and

rewards τ = (s0,a0, r0 . . . , sn ,an , rn), n ≤ T , and is obtained by

following the policy for T time-steps or until a terminal state is

reached. We use τa to refer only to the sequences of actions in a

trajectory τ ; we refer to τa as an action-trajectory.

The value of an action a in state s under a policy π in a task c is
referred to as the Q-value and is determined by the Q function Qπ

c :

Qπ
c (s,a) = E

[∑T
t=0 γ

tRt |St = s,At = a
]
. A useful property of the

Q-function is given by Bellman equation:

Qπ
c (s,a) = E

[
Rt + γ Q(St+1 = s

′,At+1 = a′)|St = s,At = a
]

This implies that the Q value at St and At can be determined from

knowing the expected Q value at St+1,At+1 and the expected value
of Rt .

Finally, we define a macro of length l to be a sequence of actions

m = (a0, · · · ,al). We denote bym(i) the i
th

action in macrom, and

define Qπ
c (s,m) to be the Q value of state-macro pair (s,m). Given

a set of macros, M, we define an extended action set of an MDP

with action set A as AM = A ∪M. That is, an extended action

set is composed of both the primitive actions in A and the macros

in M. Our goal in this work (formalized in Section 4) is to find a

set of macros that maximizes performance on the problem class.

3.2 Background on Compression Algorithms
The goal of compression is to represent messages or data in a

compact manner by drastically reducing the number of bits needed

to express the same information. Many compression algorithms

share the same building blocks and their differences lie in how

those elements are constructed and used.

Given an initial set of symbols Σ, called an alphabet, compres-

sion techniques seek to identify the most frequently used symbols

in the alphabet and generate a codebook where each symbol is as-

signed a unique binary representation—a unique codeword. Once
the codebook is built, new messages can be expressed in binary

form by mapping each symbol (or sequence of symbols) in the

message to a codeword in the codebook. For example, consider an

alphabet Σ = {a, i,h} and two different codebooks associating a

codeword with each symbol: codebook A = {0, 1, 01} and code-

book B = {01, 0, 1}. Furthermore, consider encoding a message

α = “hi” under each different codebook. The binary representation

of α under codebook A would be 011 (h = 01, i = 1); however,

under codebook B, it would be represented as 10 (h = 1, i = 0).

Compression techniques seek to find a compact representation to

express messages.

In this work we will consider the action-trajectories obtained

from a trajectory analogous to messages, and primitive actions

analogous to an initial alphabet. By taking this perspective, com-

pressing a set of sampled action-trajectories will naturally result

in generating a set of macros that are able to re-express sampled

trajectories in a compact manner (using fewer symbols), thereby

reducing the number of decision an agent must make.

4 PROBLEM STATEMENT
We consider the setting where an agent is required to solve a set of

tasks c ∈ C′
, C′ ⊂ C, where C is a given problem class, and assume

that when solving a particular task, it can interact with it for I
episodes. After the agent has trained on a subset Ctrain ⊂ C′

of

tasks, we are interested in identifying a set of macros to be used for

improving learning in the set of remaining tasks Ctest ⊂ C′
. Notice

that all tasks belong to the same problem class and so we wish to

identify patterns in the optimal policies for problems already solved

A Compression-Inspired Framework for Macro Discovery AAMAS’19, May 2019, Montreal, Canada

Figure 1: Diagram depicting proposed framework.

to improve learning in the remaining problems. We work under the

assumption that macros identified in trajectories of optimal policies

in a set of representative training tasks will be useful to solve other

related tasks drawn from the same problem class. This assumption

is supported by our experimental results.

As a concrete example, consider the case of an agent tasked to

allocate cloud resources as described by Liu et al. [4]. In early stages

of training, while the agent has not yet found a good performing

policy, resources are allocated sub-optimally, which results in large

latency and power consumption relative to an optimal policy. If the

agent is able to leverage optimal policies for related problems in

order to improve learning, it would be able quickly reach an efficient

resource allocation policy in any new problem it might face. In this

scenario, the agent could learn optimal policies for a small sub-set

of resource allocation problems, Ctrain , analyze trajectories from

these policies and identify macros to quickly obtain efficient policies

for a set of novel problems, Ctest .

We define the performance of a set of macros M in a particular

task c to be ρ(M, c) = E
[
1

I
∑I
i=0

∑T
t=0 R

i
t
��AM , c

]
, where Rit is the

reward at time step t during the ith episode. This quantity expresses
the expected average return an agent gets over I episodes on a task

c using an extended action setAM . This implies that the agent uses

some learning algorithm to update its policy and the performance

of a set of macros is defined by how quickly those macros allow an

agent to improve its return during training.

Our goal is to find one (of possible many) optimal set of macros

M∗
for C′

according to the following criterion:

M∗ ∈ argmax

M

1

|C′ |

∑
c ∈C′

ρ(M, c).
(1)

Unfortunately, the domain of the objective in Eq. 1 is discrete, mak-

ing the objective non-differentiable, and thus difficult to optimize.

In this paper we posit that compression techniques provide a means

to identify highly reusable macros which represent recurring behav-

iors in the problem class. These allow an agent to more effectively

learn to solve new tasks, since they enable the agent to reproduce

previously-observed recurring optimal behaviors, thereby allowing

it to acquire optimal policies for novel tasks while making fewer

decisions. In the next section, we propose using compression as a

method for generating a set of candidate macros and approximat-

ing the set M∗
by incorporating the top performing and diverse

macros, M ′
, to the agent action-set.

5 A HEURISTIC APPROACH FOR
APPROXIMATINGM∗

The proposed framework can be summarized by the diagram shown

in Figure 1. After the agent has already trained in a set of tasks

Ctrain ⊂ C′
, the agent obtains an optimal policy π∗

c for each task

and samples n trajectories from each policy π∗
c for task c . Once

these samples have been obtained, our framework generates a set

of macrosM ′
as an approximation toM∗

by a 3-step process: 1)
macro generation, 2) macro evaluation, and 3) macro selection.

5.1 Macro Generation - A Compression
Perspective to Identify Recurrent Action
Sequences

There are many possible ways to generate macros from sampled

trajectories. One approach would be to simply analyze all possible

sequences of actions that can be obtained from these samples. How-

ever this would generate an extremely large number of macros;

combinatorial in the length of the sampled trajectories, to be precise.

As a practical strategy to deal with this issue, we propose using

compression techniques to generate candidate macros.

Consider the problem of finding a compressed representation

for a action-trajectory τa = (a,b, c,d) where {a,b, c,d} ∈ A. From

the perspective of compression, we can consider ta akin to a mes-

sage we wish to compress and {a,b, c,d} to the symbols in the

initial alphabet. Compressing τa , thus, would result in building

larger repeating sequences of symbols that are incorporated to the

alphabet. That implies that initially the alphabet is composed of

only primitive actions and after compression, it will also contain

macros.
2

Following this intuition, the sampled action-trajectories are com-

pressed and the symbols defined in the final codebook represent a

set of candidate macros,M, to be evaluated. Because these symbols

are the ones that allow optimal trajectories to be compressed, they

are (by construction) highly recurring in those trajectories. This

implies that they are pieces of behaviors that often appear as part of

optimal policies for tasks in the a specific class of problems and are,

for this reason, good candidates for reusable and recurring macros.

In this work, we selected LZW [16] as a compression algorithm

because of its simplicity and efficiency in populating the codebook.

Algorithm 1 shows our adaptation to encode action-trajectories as

macros.

5.2 Macro Evaluation - The Value of a Macro
At this stage we have generated a possibly large set of candidate

macros M, but we do not have a sense of how useful they are

in general in relation to each other when solving tasks from the

problem class. One way of evaluating them would be to re-train the

agent on the training tasks, adding each macro in turn to the action-

set and assessing the resulting improvement in learning achieved

with respect to only using primitive actions. However, this would

2
It is worth noting that not all compression algorithms build their alphabet incremen-

tally, but many popular ones (such as LZW) do.

AAMAS’19, May 2019, Montreal, Canada Francisco M. Garcia, Bruno C. da Silva, and Philip Thomas

Algorithm 1 LZW - macro codebook generation

1: Σ = A

2: macrom = ()

3: for each action-trajectory τa do
4: for each action a in τa do
5: m =m + a
6: if m < Σ then
7: Σ = Σ ∪ {m}

8: m = ()

quickly become very expensive for large action spaces where there

could be thousands of macros. We propose a score for evaluating a

macro in a problem class that can be efficiently computed offline

in closed-form based on the Q-values of primitives. We propose

determining the value of a macrom over a problem class C by the

W-function defined as:

W π
C
(m) = E

[
Qπ
C (S,m)

]
(2)

where the expectation is defined over both tasks C and states S
sampled from the on-policy distribution [12]. In other words, we

defined the value of a macrom to be the expected Q-value ofm
over all states in the problem class.

Assuming that compressing action-trajectories generates a large

number of candidate macros, learning the true value of macros as

defined in 2 for each candidate becomes computationally expen-

sive, particularly if the size of S is large. However, this formulation

allows us to compute the W-values for all macros in closed-form,

provided we have access to the true Q-values for all a ∈ A, to the

transition function Pc , and π is greedy with respect to Q. This prop-

erty is shown in Theorem 5.1 (for clarity we write Pc (s
(t),a, s(k))

in place of Pr(Sk = s(k) |At = a, St = s(t)), s(0) refers to the state

where a macro or action is executed and s(k) refers to the state

visited after executing k − 1 actions from state s(0)).

Theorem 5.1. Let π be a policy, c ∈ C a task in problem class C
andQπ

C
(s,a) be the Q-value of executing action a ∈ A in state s ∈ S.

The value of Qπ
C
(s,m) (and consequentlyW π

C
(a)) can be computed

in closed-form by:

Qπ
c (s,m) =

lm−1∑
k=0

(γ k [
∑
s (1)∈S

· · ·
∑

s (lm)∈S

Πlm−1
i=0 Pc (s i ,m(i), s i+1)

Pc (s (k),m(k), s (k+1))
]

× [Q (sk ,m(k)) −
∑

sk+1∈S

Pc (s (k),m(k), s
(k+1))

× γ
∑
a′∈A

π (a′, s (k+1))Q (s (k+1), a′)])

+
∑
s (1)∈S

· · ·
∑

s (lm)∈S

Πlm−1
i=0 Pc (s (i),m(i), s

(i+1))

× γ
∑
a′∈A

π (a′, s (lm))Q (s (lm), a′)
Proof. Assume we know the true Q function for a policy π in

task c over all primitive actions. We can calculate the Q-value of a

macrom = (a,b, c), at state s , and obtain a general expression for a

macro of arbitrary length lm as follows:

Qπ
c (s,m) =

∑
s (3)∈S

Pc (s (0),m, s (3))(Rc (s (0),m, s (3))

+ γ
∑
a′∈A

π (a′, s (3))Qπ
c (s (3), a′))

=
∑

s (3),s (2),s (1)∈S

Pc (s (2), c, s (3)) Pc (s (1), b, s (2)) Pc (s (0), a, s (1))

× (Rc (s (0), a, s (1)) + γ Rc (s (1), b, s (2)) + γ 2Rc (s (2), c, s (3))

+ γ
∑
a′∈A

π (a′, s (3))Qπ
c (s (3), a′))

=
∑

s (3),s (2),s (1)∈S

[Pc (s (2), c, s (3))

× Pc (s (1), b, s (2)) Pc (s (0), a, s (1)) Rc (s (0), a, s (1))]

+ [Pc (s (2), c, s (3)) Pc (s (1), b, s (2)) Pc (s (0), a, s (1))

× γ Rc (s (1), b, s (2))]

+ [Pc (s (2), c, s (3)) Pc (s (1), b, s (2)) Pc (s (0), a, s (1))

× γ 2Rc (s (2), c, s (3))]

+ [Pc (s (2), c, s (3)) Pc (s (1), b, s (2)) Pc (s (0), a, s (1))

× γ
∑
a′∈A

π (a′, s (3))Qπ
c (s (3), a′)]

= [(
∑

s (3),s (2),s (1)∈S

Pc (s (2), c, s (3)) Pc (s (1), b, s (2))

× (Q (s (0), a) −
∑
s (1)∈S

P (s (0), a, s (1))

× γ
∑
a′∈A

π (a′, s (1))Q (s (1), a′))]

+ [γ
∑

s (3),s (2),s (1)∈S

Pc (s (2), c, s (3)) Pc (s (0), a, s (1))

× (Q (s (1), b) −
∑
s (2)∈S

P (s (1), b, s (2))

× γ
∑
a′∈A

π (a′, s (2))Q (s (2), a′)]

+ [γ 2

∑
s (3),s (2),s (1)∈S

Pc (s (1), b, s (2)) Pc (s (0), a, s (1))

× (Q (s (2), c) −
∑
s (3)∈S

Pc (s (2), c, s (3))

× γ
∑
a′∈A

π (a′, s (3))Q (s (3), a′)]

+
∑

s (3),s (2),s (1)∈S

Pc (s (2), c, s (3)) Pc (s (1), b, s (2)) Pc (s (0), a, s (1))

× γ
∑
a′∈A

π (a′, s (3))Q (s (3), a′)

=

lm−1∑
k=0

(γ k [
∑
s (1)∈S

· · ·
∑

s (lm)∈S

Πlm−1
i=0 Pc (s i ,m(i), s i+1)

Pc (s (k),m(k), s (k+1))
]

× [Q (sk ,m(k)) −
∑

sk+1∈S

Pc (s (k),m(k), s
(k+1))

× γ
∑
a′∈A

π (a′, s (k+1))Q (s (k+1), a′)])

+
∑
s (1)∈S

· · ·
∑

s (lm)∈S

Πlm−1
i=0 Pc (s (i),m(i), s

(i+1))

× γ
∑
a′∈A

π (a′, s (lm))Q (s (lm), a′)

A Compression-Inspired Framework for Macro Discovery AAMAS’19, May 2019, Montreal, Canada

□

Notice that this expression is given in terms of the Q-values

of primitives, and consequently, the W-values can be calculated

in closed form. Having access to the Q-values of primitives is a

reasonable assumption considering that algorithms like Q-learning,

[15] and DQN [10] approximate the true Q-value. If the agent uses

these techniques to learn an optimal policy for the tasks in Ctrain
it will have a reasonable approximation to Q readily available.

In the case of a greedy policy notice that:

∑
a′∈A π (a′, s)

× Qπ
c (s,a

′) = max

a′
Qπ
c (s,a

′). Furthermore, by definition, there is

always a state-primitive pair whose Q-value is no smaller than

the largest state-macro pair Q-value. Consequently, we have that

max

a′∈A
Qπ
c (s,a

′) ≥ max

a′∈AM

Qπ
c (s,a

′) for any set of macros M. This

implies that the addition of new macros to the action-set does not

affect the value of the existing elements in the set.

In the case of stochastic policies, introducing a new element in

the original action-set of the agent affects the summation in the

last term over all actions since the probability distribution defined

by π changes as well, so the actual value of a macro can no longer

be calculated in closed form. However, it can still be calculated

efficiently by applying the Bellman equation using the Q-values of

primitives as a starting point.

5.3 Macro Selection - Encouraging Macro
Diversity

Once the value of a macro has been estimated, it can be used to pre-

dict which macros we generally believe will lead to higher rewards.

However, there is a trade-off we must account for when extending

the agent’s action set. If too few macros are included in the action

set, the agent might miss on the ability to better explore the state

space; on the other hand, including too many will result in the

agent having too large of an action-set, which will hinder learning.

This trade-off has also been observed in the context of options by

Machado et al. [6]. We tackle this problem by establishing a distance

metric between macros and only including those that are dissimilar

enough to the rest of the action-set.

Let St be a random variable denoting the state wherem is ex-

ecuted and St+lm the state where m finishes execution. Further-

more, let S ′ = d(St+lm , St) denote a random variable describing the

change in state caused by the execution of a macro, where d is a

distance measure for the state space, and let pm be the distribution

for S ′ for macrom. We refer to pm as the end-state distribution. We

define the distance between two macrosm1 andm2 to be the KL

divergence between pm1
and pm2

, that is:

DKL(pm1
| |pm2

) = −
∑
S ′

pm1
(S ′) log

(
pm2

(S ′)

pm1
(S ′)

)
.

In the case of continuous state spaces, we discretize the distribution

into appropriately sized bins or buckets.

Figure 2 shows the empirical end-state distribution calculated

for four macros in the maze navigation problem class (introduced

in the next section). The macros m1,m2,m3,m4 are defined by

repeating the same primitive action 5 times. The possible primitive

actions are given by r , l ,u,d and they allow the agent to move in the

environment right, left, up or down, respectively. The figure intends

to show that macros reflect their similarity (or differences) in the

effect that they have in the distribution of state transitions, and we

can measure the similarity between two macros by measuring the

distance between their distributions.

The setM ′
is then incrementally built by only including those

macros that have a minimum distance δ to all other macros that

have already been included in the set. By selecting macros in de-

scending order according to their W-value, their W-function defines

a preference criterion by which macros can be selected.

Pseudocode describing our macro discovery framework is given

in Algorithm 2.

Algorithm 2 Macro discovery framework

1: 1. Macro Generation
2: Learn optimal policy π∗

c for all c ∈ Ctrain .

3: Collect action-trajectories τa from each π∗
c in task c .

4: Generate macrosM from all τa by Algorithm 1

5:

6: 2. Macro Evaluation
7: Sort allm ∈ M byW

π ∗
c

C
(m) in descending order.

8:

9: 3. Macro Selection
10: AM′ = A

11: form ∈ M do
12: if minDKL(pm | |pm′) > δ ,∀m′ ∈ AM′ then
13: AM′ = AM′ ∪ {m′}

6 EXPERIMENTAL RESULTS
In this section we present experimental results providing empirical

evidence that the identified macros lead to improved learning. We

first analyze two simple problem classes: chain andmaze navigation,

whose transition models can be defined apriori and the true Q-

values for any policy can be accurately estimated in tabular form.

These problems allow us to study the properties of our method in

detail and visualize how the identified macros affect the behavior of

the agent during learning. We then further extend our experiments

to more complex problem classes by relaxing the assumption of

access to the true Q-values of primitive actions, using function

approximation to estimate Q and learning a model from data to

estimate the transition function.

In the case of the chain problem, we limit our experiments to

compare the performance between our framework and using only

primitive actions. For all other experiments, we also contrast our

approach to using Eigen-Options [6] and the Option-Critic archi-

tecture [1]. These methods work in a similar setting to ours, where

the agent first interacts with some specific environments and those

experiences can then be leveraged to facilitate learning in novel,

but related problems. Our experiments show that despite macros

being a simple open-loop alternative to options, they are sufficient

to generalize to novel problems and result in improved performance

relative to the competing methods. These tests also highlight the

fact that Eigen-Options and the Option-Critic are not well suited to

adapt to different transition graphs, while the macros identified by

our framework capture recurring patterns across the problem class.

AAMAS’19, May 2019, Montreal, Canada Francisco M. Garcia, Bruno C. da Silva, and Philip Thomas

(a) End-state distribution for
macrom1

(b) End-state distribution for
macrom2

(c) End-state distribution for
macrom3

(d) End-state distribution for
macrom4

Figure 2: End-state distribution for macrosm1,m2,m3 andm4 in the maze navigation problem class (described in experiments
section). The primitive action-set is composed of for actions r , l ,u,d , and macros defined as follows:m1 = (r , r , r , r , r),

m2 = (l , l , l , l , l),m3 = (u,u,u,u,u),m4 = (d,d,d,d,d), where primitive actions r , l ,u,d move the agent one state right, left, up or
down, respectively.

In the first two experiments, the agent was trained using Q-

learning with tabular representation and in the remaining exper-

iments the policy was trained using DQN [10]. Exploration was

implemented with an ϵ-greedy strategy with an initial value of 0.9

and decreasing by a factor of 0.99 after each episode.

6.1 Chain Problem Class
In this problem class, the agent originally has at its disposal two

primitive actions,A = {a1,a2}. The states and transitions between
states in each task form a chain, meaning that each state has two

possible transitions, move to the state to the right or move to the

state to the left. Given a state sk at position k in the chain, action

a1 moves the agent to state sk+1 but with a small probability the

agent moves to state sk−1. Similarly, after taking action a2, the agent
moves to state sk−1 but with a small probability it moves to state

sk+1. The agent receives a large reward at either end of the chain,

so if there are a total of n states in the chain, the agent receives a

large reward R0 or Rn upon reaching states s0 or sn , respectively.
We ensure by construction that from the initial state in the chain

the number of states at one end is much larger than the number of

states at the other end of the chain, and that the reward obtained

at the farther end is much larger than the reward obtained at the

nearest end. In our implementation, when constructing a new task,

an integer a between 0 and 100 is sampled uniformly to define the

length of the chain to the right of the agent’s initial position. The

left side of the chain is assigned a length of 100 − a. The end state

at the end of the longest side of the chain results in a reward of

+1000 and the one at the shortest end results in a reward of +10. In

this experiment we set δ = 2.0 to filter macros.

Two different different tasks within the chain problem class are

shown in Figure 3. The agent’s initial position is shown as a gray

square within the chain, the state which results in the largest reward

is shown in red at the farther end of the chain (relative to the initial

position), and the state resulting in the smallest reward is shown

in blue at the closer end of the chain.

We present this problem class as an intuitive example of the type

of problems were simple open-loop macros can lead to a substantial

improvement in the agent’s performance. In this problem class,

oftentimes the policy of the agent converges to the nearest end if

exploration is done randomly using primitives, since it is unlikely

(a) Chain task example 1 (b) Chain task example 2

Figure 3: Example tasks for chain problem class. The agent
starts in the location shown as a gray square within the
chain. If it reaches the state at the farther end (shown in
red) it receives a reward of +100, if it reaches the state at
the closer end (shown in blue) it receives a reward of +10.

Figure 4: Comparison of mean learning curve over 20
randomly generated chains. The error bars indicate

standard error.

that random exploration will reach the further end of the chain.

However, if an agent has access to macros well suited for this type

of problem, it is able to reach both ends of the chain early in its

lifetime and learn the correct optimal policy for a specific task.

Figure 4 depicts the mean reward accumulated by the agent

during training over 20 different randomly generated chain tasks,

after using only 4 tasks for training to generate candidate macros.

The results show that, on average, the policy of an agent equipped

only with primitive actions (shown in blue) converges to a sub-

optimal behavior, since it hardly ever discovers the farthest end

with the largest reward. As the action-set of the agent is augmented

A Compression-Inspired Framework for Macro Discovery AAMAS’19, May 2019, Montreal, Canada

with the identifiedmacros, the agent no longer only executes actions

randomly, but rather they are guided by the macros identified for

this type of problems.

Note that this does not mean that the agent is not able to rep-

resent an optimal policy using only primitive actions; in fact any

policy that can be represented with macros can be represented with

primitives. What these result show is that macros provide guidance

to the agent which allow it to better explore the state space.

6.2 Maze Navigation Problem Class
The previous class of problems allowed us to asses the ability of the

agent to reach an optimal policy with the identified macros, when

having access to only primitive actions would fail. In this set of

experiments, we extend our results to class of problem with a much

larger state space and an action-set composed of four primitive

actions. This experiment compares the performance of our method,

when we know the true transition function and the true Q-values,

to the performance of Eigen-Options and the Option-Critic. In

this case, all methods were implemented in tabular form. In this

experiment, to make a fair comparison in the setting for which

the competing methods were designed, we allowed them to learn

options defined in terms of the same transition graph where they

were tested.

At the beginning of an episode, the agent is randomly placed in

an initial state, in a randomly generated maze of size 60 × 60, and

the objective is to reach a specific goal state. The agent receives

a reward of -1 after executing an action and receives a reward of

+100 upon reaching the goal state. The state is represented by the

xy-position in the environment and the agent can execute four

possible actions: move right, move left, move up or move down.

We test robustness to stochastic environment by introducing noise

to each executed action: after selecting an action, with probability

0.8 the agent executes the selected action and with probability 0.2

the agent executes any action at random. If the agent executes an

action that would move it to a state that is blocked (an obstacle), the

agent remains in the same state. The agent trained on 6 different

tasks to generate candidate macros, and tested on 20 different tasks.

To be able to reuse options for Eigen-Option and Option-Critic, the

test tasks were defined by changing the goal location in one of the

environments previously used for training. In this experiment we

set δ = 2.0.

The benefits of the identified macros can be seen empirically

in Figure 5. The figures show as gray lines the paths taken by the

agent (shown in red) when selecting actions from a uniform distri-

bution during a period of 1000 steps in one sample environment.

We consider this a period of pure exploration. The figure on the left

shows that when the agent explores using only primitive actions,

it densely visits a small region of the state space but is unlikely to

reach states that are far away. The figure on the right, on the other

hand, shows that with the identified macros the agent is able to

explore a much larger area of the state space. This latter approach

allows the agent to learn at a global scale during early stages of

training.

Figure 6 shows the mean performance and standard error of

the agent in the 20 testing tasks from this problem class, which is

in accordance with the intuition on exploration described above.

Figure 5: Trajectories obtained from pure exploration after
1000 steps using action-sets A (left) and AM′ (right).

Figure 6: Mean performance on 20 testing tasks on maze
navigation problem class. Macros evaluated using true Q

function and transition function.

Just as it was the case in the previous experiment, extending the

action-set with the identified macros led to a large performance

improvement over using only primitives. In this scenario, our frame-

work performs slightly better to Eigen-Option and Option-Critic,

however, it is worth noting that the competing methods required

to learn environment specific options, making them highly sample

inefficient.

In the next sections we compare our method to the competitors

in the more interesting case where the agent needs to identify

options that are reusable across many tasks that might differ not

only in terms of their reward functions, but also in terms of their

transition graph; in that case, our method’s advantages are made

even clearer.

6.3 Scaling up Results to Large State Spaces
In the previous experiments, we were able to precisely calculate the

W-values of each macros since the transition probabilities and true

Q-values for primitives were known. This section presents an em-

pirical demonstration that these results hold when we use function

approximation to estimate Q and approximate the transition model

from data. In all of these experiments, the agent collected (s,a, s ′)
transitions during training, and they were used to fit a model to

estimate the transition probabilities P(s,a, s ′). It is worth noticing

that in the following three problems the transition graphs are not

maintained across tasks and the competing methods are not well

suited/capable of dealing with this more general learning setting:

AAMAS’19, May 2019, Montreal, Canada Francisco M. Garcia, Bruno C. da Silva, and Philip Thomas

Problem Class Primitives Primitives+Macro Eigen-Options Option-Critic

Maze Navigation (approximate) −2355.44 ± 640.54 −2016.50 ± 643.71 −3444.06 ± 459.68 −2788.52 ± 696.03

Animat −909.77 ± 199.53 −752.89 ± 188.59 −1432.46 ± 64.72 −1955.47 ± 41.22

Lunar Lander −314.03 ± 44.09 −246.89 ± 28.99 −266.43 ± 5.22 −265.51 ± 7.42

Table 1: Average performance on test tasks with large state spaces.

Figure 7: Mean performance on 20 testing tasks on maze
navigation. Macros evaluated using approximate Q

function and transition function.

(1) Maze Navigation Problem Class: We revisited the maze

navigation problem class, this time approximating the true Q-values

for primitives for the training tasks using DQN and randomly gen-

erating training and testing environments. Since in this problem the

state-space is discrete, the transition function can be easily modeled

by collecting samples of (s,a, s ′) tuples and estimating P(s ′ |s,a) by
looking at the frequency count.

Figure 7 shows the mean learning curve over 20 randomly sam-

pled environments contrasting the reward accumulated by an agent

using only primitives (blue), using the the identified extended

action-set (red), using Eigen-Options (black) and Option-Critic

(green). This case highlights how general the identified macros

are compared to the competing methods. The Eigen-Option ap-

proach fails to generalize to new domains and actually prevents

the agent from learning an optimal policy. The option critic ap-

proach shows an interesting behavior, improving performance in

a step-wise fashion. This can be explained by noticing that, at the

beginning of an episode, the options are poorly suited for the new

problem. However, as the policy improves and options are updated,

they cause large improvements in the reward obtained. Our method,

in this case, obtains generally useful macros which are agnostic to

the transition graph, leading to a significant overall improvement.

(2) Animat Problem Class: This type of problem was first

introduced by Thomas and Barto [14] and presents the challenge

of having a much larger action space than the previous problems.

In this problem class, the agent is a circular creature that lives in

a continuous state space. It has 8 independent actuators, angled

around it in increments of 45 degrees. Each actuator can be either

on or off at each time step, so the action set is {0, 1}8, for a total of

256 actions. When an actuator is on, it produces a small force in

the direction that it is pointing. The agent is tasked with moving

to a goal location; it receives a reward of −1 at each time-step

and a reward of +100 at the goal state. The different variations

of the tasks correspond to randomized start and goal positions in

different environments. The agent moves according to the following

mechanics: let (xt ,yt) define the state of the agent at time t and
d be the total displacement given by actuator β with angle θβ .
The displacement of the agent for a set of active actuators, B, is

given by, (∆x ,∆y) =
∑
β ∈B(d cos(θβ),d sin(θβ)). After taking an

action, the new state is perturbed by 0-mean unit variance Gaussian

noise. Notice that certain actuator combinations will not help the

agent reach a goal; for example, if only actuators at angles 0 and

180 are activated, that action would leave the agent in the sample

position where it previously was (ignoring noise effects). We used

4 training tasks and tested 10 task variations corresponding to

different environments with distinct transition graphs.

(3) Lunar Lander ProblemClass: The implementation for this

problem class was obtained from OpenAI Gym [2]. The agent is

tasked with landing a rocket in a specific platform and it has 4

actions at its disposal. Thrust left, right, up or do nothing. We

modified the original code to obtain variations of the problem class

by changing the landing location, terrain and the thrust force of

the rocket. We use 4 tasks for training and 8 variations for testing.

Performance results (according to Equation 1) for each
method, in the three domains described above, are reported
in Table 1. Our method, as before, outperforms all competi-
tors.

7 CONCLUSION
In the paper, we introduced a general framework for identifying

reusable macros. By analyzing the trajectories of optimal or near-

optimal policies for tasks drawn from a common class of related

problems, we can identify behaviors that recur, that are associated

high rewards, and that are diverse. These allow the agent to more

efficiently explore the state space and acquire optimal policies for

novel tasks more rapidly—even when the transition dynamics of

the problem might change. We introduced a new approach to deter-

mine the value of a macro in closed-form and introduced a novel

way of determining the similarity between macros, so as to ensure

diversity and to control the size of the augmented action space.

Our empirical results show that our approach outperforms state-

of-the-art methods for option discovery when the transition graph

is maintained across tasks, and that it performs those competitors

significantly when this assumption relaxed and tasks are allowed

to differ not only in their reward structure but also in terms of their

transition dynamics.

A Compression-Inspired Framework for Macro Discovery AAMAS’19, May 2019, Montreal, Canada

ACKNOWLEDGMENTS
This work was partially supported by FAPERGS under grant no.

17/2551-000

REFERENCES
[1] Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. The Option-Critic Archi-

tecture. In AAAI.
[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. (2016). http:

//arxiv.org/abs/1606.01540 cite arxiv:1606.01540.

[3] Ramnandan Krishnamurthy, Aravind S. Lakshminarayanan, Peeyush Kumar,

and Balaraman Ravindran. 2016. Hierarchical Reinforcement Learning using

Spatio-Temporal Abstractions and Deep Neural Networks. CoRR (2016).

[4] Ning Liu, Zhe Li, Jielong Xu, Zhiyuan Xu, Sheng Lin, Qinru Qiu, Jian Tang, and

Yanzhi Wang. 2017. A Hierarchical Framework of Cloud Resource Allocation

and Power Management Using Deep Reinforcement Learning. 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS) (2017), 372–
382.

[5] Sridhar Mahadevan. 2005. Proto-value Functions: Developmental Reinforcement

Learning. In Proceedings of the 22nd International Conference on Machine Learning
(ICML-2005). ACM, 553–560.

[6] Michael Bowling Marlos C. Machado, Marc G. Bellemare. 2017. A Laplacian

Framework for Option Discovery in Reinforcement Learning. CoRR (2017).

[7] Amy McGovern and Andrew G. Barto. 2001. Automatic Discovery of Subgoals in

Reinforcement Learning Using Diverse Density. In Proceedings of the Eighteenth
International Conference on Machine Learning (ICML ’01). Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 361–368. http://dl.acm.org/citation.cfm?

id=645530.655681

[8] A. McGovern and R. Sutton. 1998. Macro Actions in Reinforcement Learning: An
Empirical Analysis. Technical Report. University of Massachusetts - Amherst,

Massachusetts, USA.

[9] Ishai Menache, Shie Mannor, and Nahum Shimkin. 2002. Q-Cut - Dynamic

Discovery of Sub-goals in Reinforcement Learning. In Proceedings of the 13th
European Conference on Machine Learning (ECML ’02). Springer-Verlag, London,
UK, UK, 295–306. http://dl.acm.org/citation.cfm?id=645329.650060

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen

King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.

Human-level control through deep reinforcement learning. Nature 518, 7540
(Feb. 2015), 529–533. http://dx.doi.org/10.1038/nature14236

[11] Jette Randl. 1998. Learning Macro-Actions in Reinforcement Learning. In NIPS.
[12] Richard S. Sutton and Andrew G. Barto. 2018. Introduction to Reinforcement

Learning (2nd ed.). MIT Press, Cambridge, MA, USA.

[13] Richard S. Sutton, Doina Precup, and Satinder P. Singh. 1999. Between MDPs and

Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning.

Artificial Intelligence 112, 1-2 (1999), 181–211.
[14] Philip S. Thomas and Andrew G. Barto. 2011. Conjugate Markov Decision

Processes. In Proceedings of the 28th International Conference on International
Conference on Machine Learning (ICML’11). Omnipress, USA, 137–144. http:

//dl.acm.org/citation.cfm?id=3104482.3104500

[15] Christopher J. C. H. Watkins and Peter Dayan. 1992. Q-learning. In Machine
Learning. 279–292.

[16] T. A. Welch. 1984. A Technique for High-Performance Data Compression. Com-
puter 17, 6 (June 1984), 8–19. https://doi.org/10.1109/MC.1984.1659158

[17] Steven D. Whitehead. 1991. Complexity and Cooperation in Q-Learning. In

Proceedings of the Eighth International Workshop (ML91), Northwestern University,
Evanston, Illinois, USA. 363–367.

http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://dl.acm.org/citation.cfm?id=645530.655681
http://dl.acm.org/citation.cfm?id=645530.655681
http://dl.acm.org/citation.cfm?id=645329.650060
http://dx.doi.org/10.1038/nature14236
http://dl.acm.org/citation.cfm?id=3104482.3104500
http://dl.acm.org/citation.cfm?id=3104482.3104500
https://doi.org/10.1109/MC.1984.1659158

	Abstract
	1 Introduction
	2 Related Work
	3 Background and Notation
	3.1 Background on Markov Decision Processes
	3.2 Background on Compression Algorithms

	4 Problem Statement
	5 A Heuristic Approach for Approximating M*
	5.1 Macro Generation - A Compression Perspective to Identify Recurrent Action Sequences
	5.2 Macro Evaluation - The Value of a Macro
	5.3 Macro Selection - Encouraging Macro Diversity

	6 Experimental Results
	6.1 Chain Problem Class
	6.2 Maze Navigation Problem Class
	6.3 Scaling up Results to Large State Spaces

	7 Conclusion
	Acknowledgments
	References

