
Task-Based Behavior Generalization via Manifold Clustering

Rafael Garcia, Bruno C. da Silva, and João L. D. Comba

Abstract— Machine learning algorithms can be expensive to
deploy, in particular, those used in robotics applications that
perform many variations of the same task. Solutions to one
variation of a task may be found via Reinforcement Learning
algorithms, and are typically modeled as a vector of N param-
eters encoding the robot’s behavior policy. When N is large or
executing robot trials is time-consuming, searching in the space
of solutions becomes prohibitively expensive. In this paper, we
introduce a method that allows robots to generalize behaviors
by analyzing solutions to a small number of previously-trained
related tasks. This allows for approximate policies for novel
tasks to be rapidly estimated. We present a method that achieves
this type of generalization by performing nonlinear regression
directly on the policy manifold — i.e., the solution space spanned
as we change the parameters describing tasks. Because tasks
are typically described by few parameters, the corresponding
policy manifold has few degrees of freedom, which leads to
low-dimensional surfaces. We exploit this property to construct
a function that maps task parameters to policy parameters
(a parameterized skill). Our method uses manifold clustering
techniques to deal with discontinuous manifolds, a challenging
situation arising from physical obstacles or robot constraints.
We evaluate our method on a set of robot manipulation tasks
and show that it can efficiently estimate policies for novel tasks
from a small number of training examples.

I. INTRODUCTION

Machine learning algorithms typically require searching
for solutions in high-dimensional spaces. This may be com-
putationally costly if the search process requires collecting a
large number of samples of the function being optimized. In
certain domains, such as robotics, this problem becomes even
more evident because each update to candidate solutions may
require executing many trials in a physical robot—a process
that can demand significant physical and time resources.

In this paper, we address the problem of how to optimize
not a single optimization problem—called a task—but many
variations of a task. We assume that our task is defined by a
set of input parameters representing the specific variation to
be solved. The solution to one task, then, consists of a set of
parameters; in the case of robotics, the behavior that solves
a particular task is often called a policy and encodes actions
at each state in order to execute a given desired task.

In many cases, we do not want to solve a single task, but a
large number of variations of that task. Consider, for instance,
a robot whose objective is to change the position of objects
in a room. In this example, any variation in object’s target or
initial position, or even in the properties of the object itself,
results in a different task. Therefore, during its operation, the
robot might need to accomplish an immeasurable amount of

All authors are with the Instituto de Informática at the
Federal University of Rio Grande do Sul (UFRGS), Brazil.
{rgarcia,bsilva,comba}@inf.ufrgs.br.

tasks. If the space of tasks is large, or infinite, it should be
clear that it is not feasible for a robot to learn all possible
task variations, and alternative strategies must be designed.

We aim at developing a method capable of finding so-
lutions to any possible task in a given family of related
tasks, without requiring the robot to solve it from scratch.
Generally, different variations of a task may share simi-
larities; consider, for example, the problem of moving a
robot’s actuator in some space packed with obstacles. One
particular task in this setting could be represented by a pair of
initial and final positions; a corresponding policy for solving
a task can be represented as a high-dimensional vector of
parameters encoding the physical movements that the robot
must execute to complete the desired movement. In this case,
even though there are infinite tasks that the robot could
execute, it should be clear that policies/behaviors may change
only slightly and smoothly in response to small changes in
the parameters of a task. In particular, a surface of continuous
tasks would be mapped to a surface of continuous policies.

Formally, the set of policies for solving a family of tasks
lies in a low-dimensional manifold embedded in the high-
dimensional policy space [1]. If the manifold’s geometry is
known in advance, one could directly calculate the policy
for any desired input task. Unfortunately, this is not the
case in real robotics applications, since analytically mod-
eling the manifold’s geometry requires a priori knowledge
about the behaviors that optimize arbitrary tasks in a given
task family—which may require exact knowledge about the
environment and robot’s dynamics. We present an approach
using Manifold Clustering (MC) techniques to estimate the
geometry of the policy manifold using a small number of
samples. This can be exploited to construct effective non-
linear regression models that directly predict points on the
manifold—the surface which encodes policy parameters for
novels, yet-to-be-learned tasks—thereby avoiding the costly
process of running an optimization process for each task.

Estimating the geometry of nonlinear manifolds, and
performing nonlinear regression on them, is hard because
one often does not know how complex the policy manifold
is—in particular, at which locations the policy space is
discontinuous, and how nonlinear different regions in that
space are. If these factors are poorly estimated, the quality
of the resulting regressions may be arbitrarily low. In the
previously-mentioned example, manifold discontinuities and
varying degrees of nonlinearity may result from physical
constraints to the robot, which may cause tasks with sim-
ilar parameters to require qualitatively different policies.
Concretely, a regressor would need to model a function
whose outcomes can vary in non-smooth ways in response

2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
September 24–28, 2017, Vancouver, BC, Canada

978-1-5386-2682-5/17/$31.00 ©2017 IEEE 6047

to smooth changes to its input. Naively constructing a single
regression model, mapping task parameters to policy param-
eters, thus covering the entire policy manifold, could lead
to poorly performing predicted policies, since the regressor
would not model discontinuities and different degrees of
nonlinearity in different input regions.

We introduce a method that can efficiently estimate,
via a sampling process, the geometry of the policy
manifold—including discontinuities and regions with differ-
ent complexities—to estimate reasonable solutions or poli-
cies for novel tasks. We present an adaptive framework ca-
pable of representing a complex, possibly disjoint manifold,
as a set of smaller and simpler locally-continuous charts,
thereby making it easier to construct accurate regressors from
task parameters to high-dimensional policies that solve those
tasks. This framework can then be applied to rapidly estimate
the solution to new robotics optimization problems without
having to solve each possible problem or task from scratch.

II. SETTING

Consider a robot that needs to solve a large number of
tasks drawn from an arbitrary task distribution. We assume
that each task is modeled as a Markov Decision Process
(MDP) [2], and that each single task must be executed by
a robotic agent in a way that maximizes some measure of
reward. Since the agent may need to execute many tasks, it
should aim at maximizing not the expected reward at indi-
vidual tasks, but the expected reward over all the tasks that
may be drawn from the distribution of possible MDPs. We
consider the case where MDPs have similar dynamics and
reward functions so that they can be considered variations
of a single task with a same general objective in common.
Formally, the agent’s goal in this paper is to maximize∫

P (τ)J(πθ, τ)dτ, (1)

where τ is a |T |-dimensional vector drawn from a continuous
space T representing tasks that the robot may need to
perform by learning an appropriate policy. A policy πθ is
parameterized by a vector θ ∈ RN . When a given policy
πθ is used to solve a task τ during an episode of length tf ,
it returns an expected reward J(π, τ) = E{

∑tf
t=0 rt|π, τ}

measuring how efficient πθ in solving τ . Finally, some tasks
may have a higher probability of being performed than
others. To represent the relative importance of finding good
solutions for these tasks, we add a term P (τ) representing
the probability of task τ occurring. Let a parameterized skill
be a function mapping tasks to corresponding policies:

Θ : T → RN . (2)

Note that when tackling a distribution of tasks, the exact
policy parameters to be used depends on the current task
being solved by the agent; these can be obtained by Θ, so
that the agent uses policy πΘ(τ) when solving task τ . The
goal of the agent, in this case, is to estimate a parameterized
skill function Θ that maximizes

∫
P (τ)J(πΘ(τ), τ)dτ .

A. Assumptions and Goals

The main goal of our approach is to design a method
capable of estimating the solution to a large number of tasks
drawn from a distribution P (τ). Assume we have access
to a set K of pairs {τ, θτ}, where τ is a |T |-dimensional
vector of task parameters sampled from P (τ) and θτ is the
policy vector that maximizes the expected reward for task
τ . We wish to use K to create a parameterized skill that
approximately maximizes the objective described in Section
II. In what follows, we assume, for simplicity, that P (τ)
in a uniform distribution; in practical cases where different
tasks have different probabilities of occurring, one needs only
to change the sampling procedure used to construct K; see
Section III for more details.

The number of task variations one can draw from P usu-
ally is infinite. However, related tasks usually require using
similar behaviors. In most cases, smooth variations in task
parameters generate smooth variations in the corresponding
policy vector. Therefore, one can assume that the set of
policies that optimize our objective function (Section II) does
not cover homogeneously the N -dimensional space they are
inserted. Instead, they lie in a lower-dimensional manifold
formed by the behavior of the variations presented by the
policies. The assumptions that smooth changes to tasks
parameters result in smooth changes to their corresponding
policies is a theoretical possibility, but a property often
observed in real-life robotics applications. Consider again
the example from Section I. If we modify the robot’s goal
position by a few centimeters but keeping the same starting
position and the same held object, the policy suitable to solve
this new task variation should be just slightly different from
the original task policy. Similarly, if we repeat this process
continuously, we will get a set of policies that form a low-
dimensional manifold embedded in N , whose shape is given
by the policies behavior, or how they change in order to solve
similar tasks. However, as previously stated, in specific points
this may not occur, as obstacles or physical restrictions may
force very different solutions for close tasks. In other words,
a continuous surface in the task manifold is not mapped to
a continuous surface in the policy manifold at that point.
This implies the existence of a manifold formed by multiple
continuous charts. One of our goals is to identify these charts
in order to effectively learn each of them independently.

III. BEHAVIOR GENERALIZATION VIA MC

Let a training set D = {τi, θi}i=1,...,|K| be comprised of
a few policies that solve task-based behaviors. The sampling
method used to generate D depends on the probability
density function P from where the tasks are drawn. Non-
uniform distribution requires sampling that prioritizes tasks
variations with a greater probability of being performed.
Regression methods are commonly used to generalize the
behavior of a function associated with an input set. There is
a wide range of regressions techniques, each with its pros and
cons. However, a regression method is not always suitable
to correctly estimate policies manifolds. As explained in

6048

Section I, these manifolds may have a non-uniform surface—
with some regions more complex than others—and disconti-
nuities may exist over its domain. Our approach deals with
the problem by breaking the manifold surface into smaller
regions, called charts, with continuous domain and somewhat
uniform complexity. To achieve this, one must identify these
charts from the sampled data. Traditional classifiers and
clustering techniques are not always suitable for this job,
as they generally consider spatial distance as the affinity
between samples. This measure is not effective as a single
continuous chart might have samples that are far apart in
terms of Euclidian distances, but near in the actual policy
space/manifold being considered. Similarly, two data points
close in the high-dimensional space may belong to different
charts. Therefore, alternative clustering methods able to deal
with those characteristics are needed.

To solve this problem, we use the MC [10] technique
called Sparse Manifold Clustering and Embedding (SMCE)
proposed by E. Elhamifar and R. Vidal in [3] to identify how
many continuous charts exist in the manifold formed by the
policies θ. In brief, SMCE identifies charts in the manifold
by applying spectral clustering to a |K| × |K| matrix M
containing the affinity between each pair of samples. These
affinities are defined as the solutions to sparse l1-optimization
problems that aim to identify, for each sample policy θi,
a few samples in the neighborhood of θi that can linearly
reconstruct θi. More specifically, for each sample θi, a set
Vi is constructed with the |Vi| nearest neighbors of θi. This
set is then used as input to the optimization problem specified
in Equation 3, where Qi is a diagonal matrix with weights
that penalize points that are far apart from θi, and whose
diagonal values are calculated as shown in Equation 4. The
set of weights ci is used as affinities to fill in the i-th row
of the matrix M—matrix entries associated with points that
do not belong to Vi are set to have affinity 0, including Mii.

minλ||Qici||1 +
1

2
|||Vi − θi|ci||22 subject to 1T ci = 1 (3)

Qi{j,j} =
||Vij − θi||2∑
t∈Vi
||t− θi||2

(4)

The matrix M encodes in each row i a set of coefficients
that allows a point θi in the manifold to be reconstructed
in terms of other points in the manifold. If M j

i is small,
the point θj does not contribute significantly to determining
θi. This usually implies that these points θi and θj are
far apart on the manifold surface or are not in the same
continuous chart. Given M , we can recover an arbitrary
number S of charts by applying spectral clustering to M .
There is a trade-off between higher and smaller values for S.
As the number of clusters increases, the complexity of each
chart becomes smaller but the number of required regressions
increases—and the number of samples available for each
of them decreases. However, methods such as the Elbow
Method result in very efficient lower-bound estimations for
S.

Each row i of M can be interpreted as the axes of an
N -dimensional space, where the axes of this space measure

Fig. 1. Reaching a given location in two different workspaces.

the similarity of θi with respect to each of the other N tasks
in the training set. Clustering the points constructed based
on M (i.e., its rows) results in groups of policies θ that
can be reconstructed similarly. Policies lying in the same
clusters are close to each other in the manifold surface and
therefore clustered in the same chart. In other words, policies
that solve similar tasks τ tend to require similar behaviors θ.
When this does not happens and similar tasks are placed in
different clusters, that indicates that there is a discontinuity
in that region of the manifold surface.

Lastly, for each chart, nonlinear regression is applied to
estimate each of the N attributes of the policy vector for a
previously unlearned task. In this work, we implemented the
regression using Gaussian Processes since they are capable
of modeling surfaces with non-uniform complexity.

IV. RESULTS

We evaluated our method in a simulated robotic arm tasked
with reaching arbitrary positions within a 2D workspace
with obstacles placed at unknown locations. The robotic
arm is composed of three actuated links. Tasks in this
problem correspond to the locations within the workspace
where a target may be placed, and policies correspond to
functions specifying the behavior of the robot—in particular,
the sequence of joint angles necessary for it to safely move
from a starting position to a given target position. Note that
obstacles may restrict the movements of the robot, which
creates discontinuities in the policy space, since nearby
tasks (positions in the workspace) may require qualitatively
different movements or policies. Figure 1 depicts two exam-
ples of the simulated environments we consider, both with
and without obstacles. The possible goals positions within
this domain lie over a circumference (shown in red) that
surrounds the arm; black circles in Figure 1 are the obstacles.

We encode tasks via a unidimensional parameter in the
interval of 0 to 360, corresponding to the angular position
of the target over the circumference. The space of behaviors
in this problem is highly redundant, since many sequences
of angles may exist that allow the robot to move safely to a
given target position. To address this problem, we define the
execution performance of a given policy via a cost function
that takes into account its accuracy (the distance between
the end-effector of the robot and the target at the end of the
movement) and a regularization term that penalizes longer
movements, thereby helping the system to identify unique
solutions more easily and breaking ties based on movement
complexity. Policies are represented using the framework
of Dynamic Movement Primitives, or DMPs [4]. DMPs
are parametric policies that allow for a robot to compactly

6049

represent complex trajectories in arbitrary spaces way. They
are parameterized nonlinear differential equations whose
time evolution encodes smooth kinematic control policies
that drive the movement of a robot, as described below:

kv = K(g − x)−Qv + (g − x0)f (5)
kx = v, (6)

where x is the current state within the trajectory being
modeled, v is the velocity, x0 and g define the starting
and goal states of the trajectory, K is a spring constant,
and Q is a damping term; finally, k is a temporal scaling
factor determining the execution speed of the trajectory. In
Equation 5, f is a linearly parameterized non-linear function
whose parameters can be learned by the agent, thereby
allowing it to adjust the DMP’s trajectory so that it encodes
appropriate task-specific behaviors. This function is defined
according to Equation 7, where ψi(s) are Gaussian basis
functions that dependent on the current phase (or time) s of
the system, and that have adjustable parameters or weights
wi. The phase variable s decreases monotonically from 1 to
0 along the execution of the movement and is computed by
integrating ks = −αs, where α is a pre-defined constant.

f(s) =

∑
i wiψi(s)∑
i ψi(s)

(7)

ψi(s) = exp(−hi(s− ci)2). (8)

By using the DMP framework, arbitrary trajectories (e.g., in
the space of joint angles) can be generated by integrating the
set of differential equations presented in Eq 5. In this paper
we use DMPs to encode sequences of Euclidean coordinates
of the robot’s end-effector; the coordinates generated by a
DMP are then processed by an inverse kinematics algorithm
and the resulting angles fed to a PID controller. In the experi-
ments below, we parameterized a DMP (in particular, its non-
linear function f) via a 6-dimensional parameter vector θ;
modifying it results in different candidate trajectories that the
arm may choose to follow to achieve a given goal position.

In this paper, we pose the problem of identifying the best
policy for solving a given task as a Markov Decision Process
(MDP). The rewards resulting from the execution of a policy
are given by the cost function mentioned before—one that
trades off accuracy and movement complexity. Finding a
policy that maximizes the expected reward of a policy can
be done via any Reinforcement Learning (RL) algorithm.
Note, however, that standard RL algorithms optimize a
single policy, suitable for solving a single task. In our case,
by contrast, we wish to rapidly identify policies that are
appropriate for any tasks within a possibly infinite task space;
executing an RL policy optimization process from scratch
for any novel task would be infeasible. By applying our
method, we can learn a parameterized skill function Θ that
directly predicts policies θτ for arbitrary novel tasks τ . The
first step in this process involves constructing the training
set D (Section III). To construct D, we need to sample tasks
along the task domain and search for policies that solve these
tasks. Generally, any policy search algorithm can be used to

Fig. 2. One selected dimension of the policy manifold spanned by 360
task samples, collected from an obstacle-free environment. Single regression
(left); multiple regression models from automatically manifold clustering
into four charts (right).

calculate these policies. In this paper, we use the Covariance
Matrix Adaptation Evolution Strategy algorithm (CMA-ES
[9]) to find policies that solve individual tasks.

A. Experiment 1: Obstacle-Free Environment

Figure 2 shows 360 points from one selected dimension
of the 6-D manifold formed by a set P containing sample
solutions in an obstacles-free setting. This was numerically
computed by enumerating tasks τ up to a minimum res-
olution of 1 degree and using the CMA-ES method to
manually compute an optimal policy for that task. Since
this manifold is globally continuous, smooth changes to
the task (angle) result in smooth changes to the policy. As
the manifold has a single chart, it can be estimated by a
single regression. However, as shown in Figure 2 (left), the
prediction may bring poor results due to the high complexity
of the manifold surface. We solve this issue by clustering the
manifold in charts with smoother surfaces, that can be easily
predicted. Figure 2 (right) shows the regressions applied after
clustering the data into four charts, which results in a lower
mean square error than the former approach. If we cluster
the manifold into more charts, we can improve prediction
performance. However, the number of required regressions
increases significantly and results in fewer points being
available to each regressor, thus undermining the results. The
number of charts was defined by the Elbow Method behavior.

Searching for policies is an expensive task. Therefore,
we must ensure that only a few number of policies are
required to estimate the manifold surface. For this purpose,
we considered 24 evenly spaced samples from P , which
we call P ′. Figure 3 shows one selected dimension of the
samples in P ′, with both approaches applied. We observe
that although the small number of samples naturally make
it difficult for the regressors to recover all the features, our
method still has an overall better prediction for novel tasks,
thus resulting in a smaller average MSE. Figure 3 shows the
regression behavior for both approaches. When no clustering
is applied (left), the prediction when P ′ is used as training set
is significantly worse than the predictions obtained when P is
used. On the other hand, the predictions have higher quality
when MC is applied. Figure 8 (left) depicts the increase
of the MSE as the number of samples decreases for both
approach plus an alternative method called CrKr (see IV-C).

In some problems, a small perturbation applied to the

6050

Fig. 3. One selected dimension of the policy manifold spanned by 24
task samples, collected from an obstacle-free environment. Single regression
(left); multiple regression models from automatically manifold clustering
into four charts (right).

policy used to solve a task may change the quality of
the solution. In these cases, even small regression errors
may significantly degrade the quality of the executed policy.
To investigate this further, we validated the quality of our
solutions by executing the predicted policies in a simulation.
Figure 4 compares the efficiency of the training done with
and without MC in the simulation, using 24 previously
trained samples. On top of Figure 4, we show the execution
error when no clustering is applied, and only one estimator
per attribute is used, while at the bottom, we show the
execution error when clustering is performed, and four charts
are clustered. Both the average and the standard deviation of
the execution error decreases when clustering is applied.

B. Experiment 2: Environment with Obstacles

In this experiment, we evaluate how our approach per-
forms in an environment with obstacles (Figure 1 (right)). We
generate a sample data set Q with 360 6-dimensional points
corresponding to the policies associated with each corre-
sponding task (Figure 5). We depict in Figure 5 one selected
dimension of the policy manifold. The manifold shown here
is composed of four charts (number found after applying the
Elbow Method), resulting from movement restrictions caused
by the presence of obstacles in the environment. When no

Fig. 4. Comparing execution error of predicted policies: the x-axis shows
the task domain (angle of the goal position) while the y-axis shows the
execution error of the policies predicted by the Gaussian Process (distance
in centimeters between the end effector and the target position). The average
and the standard deviation of the execution error are also highlighted. The
top image shows the execution error for a single estimator and the bottom
image shows the execution error using four estimators retrieved by the MC.

Fig. 5. One selected dimension of the policy manifold spanned by 360 task
samples, collected from an environment with obstacles. Single regression
(left); multiple regression models from automatically manifold clustering
into four charts (right).

Fig. 6. One selected dimension of the policy manifold spanned by 24 task
samples, collected from an environment with obstacles. Single regression
(left); multiple regression models from automatically manifold clustering
into four charts (right).

clustering is used (left) the results have poor predictions, as
a single regression tries to fit a continuous curve over many
discontinuous regions. However, by using MC we identify
those regions and constructing an independent estimator on
each chart and thereby achieving better predictions.

The presence of discontinuities makes it hard for a single
estimation method to efficiently learn the manifold surface,
as charts often bias the estimation of its neighbors, especially
at boundaries. However, this becomes even worse when only
a few samples are used. In this case, the manifold surface
cannot be correctly estimated at all. Figure 6 (left) shows
these effects. Our approach can handle this situation, as
shown in Figure 6 (right). As we are able to detect the
charts boundaries and apply independent estimators to each
of them, we predict better policies. Figure 7 compares the
execution error of predicted policies when running in the
simulation with and without MC. The advantages of MC are
even more salient here because of the stronger discontinuities
in the datasets. Figure 8 (right) shows how the MC approach
is able to predict solutions for novel tasks with small errors
even in discontinuous environments, while other methods
struggle even when the number of samples is higher.

C. Comparison with CrKr

We compared our method against another exist-
ing approach, called Cost-regularized Kernel Regression
(CrKr) [8]. This method aims at generalizing behaviors
for motor primitives based on adapting meta-parameters
via a reward-weighted regression. It is a non-parametric
method that efficiently models complex surfaces. However,
it does not offer a suitable solution when the manifold has
discontinuities along its domain. Figure 8 shows the average

6051

Fig. 7. Comparing performances in an environment with obstacles using a
single estimator (top) and when the charts are previously clustered (bottom)

Fig. 8. Comparing predictions achieved by our method, the CrKr [8]
and when a single regression is used. Both graphics use the same scale to
exemplify the effectiveness of the method in discontinuous manifolds.

minimum square error as the number of samples increases.
Our method performs better in both environments (with and
without obstacles). The biggest improvement happens when
the manifold has strong discontinuities. In this case, CrKr
is not able to successfully predict the surface even with a
large number of samples. On another hand, our method has
stable effectiveness even for small sampling sizes (as low as
50)—seven times smaller than the complete data set.

V. RELATED WORK

Several strategies have been proposed recently to handle
parameterized skill learning. Soni and Singh [5] propose
the construction of hierarchies of skills allowing terminating
criteria to be adapted and thus being able to deal with
closely related tasks. However, their approach is not able
to find policies to solve new tasks, as they do not directly
build a parameterized skill. Liu and Stone [6] propose an
algorithm mapping a source to a target task through Bayes
networks. As their method requires previous knowledge of
the tasks dynamics, it may not be able to handle some
applications. Hausknecht and Stone [7] manually select a
relevant task parameter to be exhaustively tested, in order to
speed up the process of finding optimal policies and estimate
a skill. Kober, Wilhelm, Oztop, and Peters [8] propose
CrKr, a nonparametric regression—discussed in the previous
section—able to generalize behaviors by estimating the mean
and variance values of the DMP meta-parameters. Although
it can effectively handle complex manifolds, it is not able
to deal with discontinuities in the manifold. Mullig, Kober,

Kroemer and Peters [12] propose a method that selects
policy samples through kinesthetic imitation from humans
behaviors and generalizes them via a mixture of movement
primitives selected by a Gating Network. However, it requires
policies to be linear in their parameters. Deisenroth, Englert,
Peters, and Fox [13] generalize a single learned policy to
multiple tasks using a parameterization of both task and
system state. Da Silva, Konidaris, and Barto [1] propose a
framework to create parameterized skills similar to ours, but
that uses ISOMAP and classification algorithms to recognize
discontinuous charts in the policy manifold.

VI. CONCLUSION

We introduced a framework to learn parameterized skills
that generalize robot behaviors to novel tasks using a small
number of samples. We address issues arising from perform-
ing regression analysis directly in policy space, which might
be discontinuous. We handle this problem by using manifold
clustering techniques over policy samples and modeling the
geometry of each disjoint chart via a separate Gaussian Pro-
cess. Our method significantly reduces the required number
of samples, thus also reducing the amount of computation
needed to learn the parameterized skill. The quality of our
predictions is similar to the one achieved by learning policies
from scratch but without the agent to do so. This occurs since
predictions are more robust to eventual discontinuities that
may arise due to obstacles and movement constraints.

REFERENCES

[1] da Silva, B.C.; Konidaris, G.; Barto, A.G., Learning Parameterized
Skills, in Proceedings of the 29th International Conference on Machine
Learning (ICML 2012). Scotland, 2012.

[2] Bellman, R., A Markovian Decision Process, in Indiana University
Mathematics Journal 6 No. 4 (1957), 679-684.

[3] Elhamifar, E.; Vidal, R., Sparse Manifold Clustering and Embedding,
in Neural Information Processing and Systems, 2011.

[4] Schaal, S.; Peters, J.; Nakanishi, J.; Ijspeert, A., Learning movement
primitives, in Proceedings of the Eleventh International Symposium
on Robotics Research. Springer, 2004.

[5] Soni, V.; Singh, S., Reinforcement learning of hierarchical skills on the
Sony Aibo robot, in Proceedings of the Fifth International Conference
on Development and Learning, 2006.

[6] Liu, Y.; Stone, P., Value-function-based transfer for reinforcement
learning using structure mapping, in Proceedings to the Twenty-First
National Conference on Artificial Intelligence, pp. 415-420, 2006.

[7] Hausknecht, M.; Stone, P, Learning powerful kicks on the Aibo ERS-
7: The quest for a striker, in RoboCup-2010: Robot Soccer World
Cup XIV, volume 6556 of Lecture Notes in Artificial Intelligence, pp.
25465. Springer Verlag, 2011.

[8] Kober, J.; Wilhelm, A.; Oztop, E.; Peters, J., Reinforcement learning to
adjust parametrized motor primitives to new situations, Autonomous
Robots, 33(4):361379, 2012. ISSN 0929-5593.

[9] Auger, A.; Hansen, N., Tutorial cma-es: Evolution strategies and co-
variance matrix adaptation, in Proceedings of GECCO’12 (Conference
Companion on Genetic and Evolutionary Computation), 2012.

[10] Izenman, A. J., Introduction to manifold learning, in Wiley Interdisci-
plinary Reviews: Computational Statistics, John Wiley and Sons, Inc.,
v. 4, n. 5, p. 439-446, 2012.

[11] Rasmussen, C.; Williams, C., Gaussian Processes for Machine Learn-
ing (Adaptive Computation and Machine Learning) MIT Press, 2005.

[12] Mullig, K.; Kober, J.; Kroemer, O.; Peters, J., Learning to select and
generalize striking movements in robot table tennis, in International
Journal of Robotics Research Vol 32, Issue 3, 2013

[13] Deisenroth, M. P.; Englert, P.; Peters, J.; Fox D., Multi-task pol-
icy search for robotics, in 2014 IEEE International Conference on
Robotics and Automation (ICRA), Hong Kong, 2014, pp. 3876-3881.

6052

