
Dealing with Non-Stationary Environments using Context Detection

Bruno C. da Silva bcs@inf.ufrgs.br
Eduardo W. Basso ewbasso@inf.ufrgs.br
Ana L. C. Bazzan bazzan@inf.ufrgs.br
Paulo M. Engel engel@inf.ufrgs.br

Instituto de Informática, UFRGS – Caixa Postal 15064 – CEP 91.501-970 – Porto Alegre, RS, Brazil

Abstract

In this paper we introduce RL-CD, a method
for solving reinforcement learning problems
in non-stationary environments. The method
is based on a mechanism for creating, up-
dating and selecting one among several par-
tial models of the environment. The par-
tial models are incrementally built according
to the system’s capability of making predic-
tions regarding a given sequence of observa-
tions. We propose, formalize and show the
efficiency of this method both in a simple
non-stationary environment and in a noisy
scenario. We show that RL-CD performs bet-
ter than two standard reinforcement learning
algorithms and that it has advantages over
methods specifically designed to cope with
non-stationarity. Finally, we present known
limitations of the method and future works.

1. Introduction

When implementing learning algorithms, one often
faces the difficult problem of dealing with environ-
ments whose dynamics might change due to some
unknown or not directly perceivable cause. Non-
stationary environments affect standard reinforcement
learning (RL) methods in a way that forces them to
continuously relearn the policy from scratch. In this
paper we describe a method for complementing RL al-
gorithms so that they perform well in a specific class
of non-stationary environments.

The two usual approaches for reinforcement learning
are called model-free and model-based. Model-free al-
gorithms do not require that the agent have access to

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

informations about how the environment works. They
are usually able to compute good policies in relatively
simple environments. For complex environments, how-
ever, a great engineering effort in designing smart state
representations is needed. Model-based approaches,
such as Prioritized Sweeping, can usually perform bet-
ter than model-free systems and present a much lower
convergence time, although at the cost of demanding
a greater computational effort per iteration. For more
details on these methods please refer to (Kaelbling
et al., 1996).

It is important to emphasize that both of these ap-
proaches were designed to work in stationary environ-
ments. When dealing with non-stationary environ-
ments, they have to continually readapt themselves
to the changing dynamics of the environment. This
causes two problems: 1) the time for relearning how to
behave makes the performance drop during the read-
justment phase; and 2) the system, when learning a
new optimal policy, forgets the old one, and conse-
quently makes the relearning process necessary even
for dynamics which have already been experienced.

The non-stationary environments that we are inter-
ested in in this paper consist on those whose behav-
ior is given by one among several different stationary
dynamics. We call each type of dynamics a context
and assume that it can only be estimated by observ-
ing the transitions and rewards. We also assume that
the maintenance of multiple models of the environ-
ment (and their respective policies) is a good solution
to this learning problem. Partial models have been
used for the purpose of dealing with non-stationarity
by other authors, such as Choi et al. (2001) and Doya
et al. (2002). However, their approaches require a
fixed number of models, and thus implicitly assume
that the approximate number of different environment
dynamics is known a priori. Since this assumption is
not always realistic, our idea is to overcome this re-
striction by incrementally building new models.

217

Dealing with Non-Stationary Environments using Context Detection

Our main hypothesis is that the use of multiple partial
models makes the learning system capable of partition-
ing the knowledge into models, each of which automat-
ically assuming for itself the responsibility for “under-
standing” one kind of environment behavior. Based on
this hypothesis, we propose, formalize and show the ef-
ficiency of a method called RL-CD, or Reinforcement
Learning with Context Detection, which performs well
in non-stationary environments by continuously eval-
uating the prediction quality of each partial model. A
brief discussion of how to measure prediction quality,
in order to deal with non-stationary environments, can
also be found in (Silva et al., 2006).

This paper is organized as follows. In section 2
we present some basic concepts about reinforcement
learning. In section 3 we discuss how to measure the
relative quality of each partial model and how to de-
tect context changes. In section 4 we present three
validation scenarios which empirically show that our
method performs better than several other RL algo-
rithms. Some concluding remarks, known limitations
and future work are discussed in section 5.

2. Reinforcement Learning

Most RL problems are modeled as Markov Decision
Processes (MDPs). Although RL algorithms are by no
means restricted to MDPs, this theoretical framework
provides an interesting way of studying learning meth-
ods and their properties. MDPs are used in order to
model situations in which an agent has to decide how
to act based on the observation of the current state.

Formally, a Markov model consists of a discrete set of
environment states, S, a discrete set of agent actions,
A, a reward function R : S × A → < and a state
transition function T : S × A → Π(S), where Π(S) is
a probability distribution over S. We write T (s, a, s′)
as the probability of making a transition from s to s′

taking action a.

An experience tuple 〈s, a, s′, r〉 denotes the fact that
the agent was in state s, performed action a and ended
up in s′, receiving reward r. The optimal value of
a state, denoted V ∗(s), is the expected infinite dis-
counted sum of rewards that the agent will gain if
it starts in that state and follows the optimal policy.
Given V ∗(s) for all states, we write the optimal policy
π∗ as the mapping from states to actions such that the
future reward is maximized.

There exist simple iterative algorithms for determining
the optimal policy, such as value iteration and policy
iteration. Their limitation is mainly due to the fact
that the agent usually does not have a priori estimates

of T and R. Thus, in order to solve this limitation,
the so-called model-free systems were created, which
do not rely on T and R in order to converge to the
optimal policy.

In this paper we compare the performance of our
approach with two traditional RL algorithms: Q-
Learning, a simple model-free algorithm, and Priori-
tized Sweeping (PS), a model-based algorithm. Since
both of these methods are widely known by the ma-
chine learning community, we simply refer the inter-
ested reader to (Kaelbling et al., 1996). We also
compare the performance of our approach with more
specialized algorithms, which perform better in non-
stationary environments: Multiple Model-Based Rein-
forcement Learning (Doya et al., 2002) and Composi-
tional Q-Learning (Singh, 1992). These methods are
shortly discussed in section 4.

3. RL with Context Detection

Before going into details of how RL-CD works, we first
present an overview of how it creates models and de-
tects context changes. First of all, we assume that
the system contains several partial models, each one
specialized in a different environment dynamics. The
quality of a model is a value inversely proportional to
its prediction error. At any given moment, only the
model with the highest quality is activated. A con-
text change is detected whenever the currently active
model is replaced. If the quality of the best model is
still worse than some minimum quality, a new one is
created, which will learn both a dynamics predictor
and the corresponding optimal policy.

The class of non-stationary environments that we are
interested in is similar to the one studied by Hidden-
Mode MDPs researchers (Choi et al., 2001). We as-
sume that the following properties hold: 1) environ-
mental changes are confined to a small number of con-
texts, which are stationary environments with distinct
dynamics; 2) the current context cannot be directly
observed, but can be estimated according to the types
of transitions and rewards observed; 3) environmen-
tal context changes are independent of the agent’s ac-
tions; and 4) context changes are relatively infrequent.
These assumptions are considered plausible for a broad
number of real applications (Choi et al., 2000), but in
case they are not met scalability problems should be
carefully considered and studied.

3.1. Learning Partial Models

RL-CD relies on a set of partial models for predicting
the environment dynamics. A partial model m con-

218

Dealing with Non-Stationary Environments using Context Detection

tains functions which estimate transition probabilities
(Tm) and rewards (Rm). Standard model-based RL
methods such as Prioritized Sweeping and Dyna can
be used to compute the locally optimal policy π∗m(s).

At each simulation step, given an experience tuple
〈s, a, s′, r〉, we update the current partial model m by
adjusting its model of transition, Tm, towards a max-
imum likelihood estimation, as follows:

∆Tm(κ) =

1− Tm(s, a, κ)
Nm(s, a) + 1

κ = s′

0− Tm(s, a, κ)
Nm(s, a) + 1

κ 6= s′

∀κ ∈ S

Tm(s, a, κ) = Tm(s, a, κ) + ∆Tm(κ), ∀κ ∈ S (1)

and the reward model, Rm, towards the moving aver-
age of all previous rewards, as follows:

∆Rm =
r −Rm(s, a)
Nm(s, a) + 1

Rm(s, a) = Rm(s, a) + ∆Rm (2)

The quantity Nm(s, a) reflects the number of times, in
model m, action a was executed in state s. We com-
pute Nm considering only a truncated (finite) memory
of past M experiences:

Nm(s, a) = min

(
Nm(s, a) + 1, M

)
A truncated value of N acts like an adjustment coeffi-
cient for Tm, causing transitions to be updated faster
in the initial observations and slower as the agent ex-
periments more. In case N is unbounded, equation (1)
implements exactly a maximum likelihood estimation
for the transition model, and equation (2) implements
exactly a mobile average for the reward model.

3.2. Detecting Context Changes

In order to detect context changes, the system must
be able to evaluate how well the current partial model
can predict the environment. Thus, a quality signal
is computed for each partial model. The quality of
a model is proportional to a confidence value, which
reflects the number of times the agent tried an action
in a state. Given a model m and an experience tuple

〈s, a, s′, r〉, we calculate the confidence, cm(s, a), and
the instantaneous quality, em, as follows:

cm(s, a) =
Nm(s, a)

M
(3)

em = cm(s, a)
(

Ω eR
m + (1− Ω) eT

m

)
(4)

The instantaneous quality, em, is a linear combination
of the quality of reward prediction, eR

m, and the quality
of transition prediction, eT

m. These values are linearly
interpolated by Ω, which specifies the relative impor-
tance of rewards and transitions for the the model’s
quality.

eR
m = 1− 2 (ZR(∆Rm)2) (5)

eT
m = 1− 2 (ZT

∑
κ∈S

∆Tm(κ)2) (6)

Moreover, ZR and ZT are normalization factors cor-
responding to (Rmax − Rmin)−1 and 1

2 (N(s, a) + 1)2,
respectively; Rmax and Rmin are the maximum and
minimum values for rewards. Notice that (5) and (6)
rescale values from the range [0, 1] to [+1,−1], where
+1 is the best prediction quality and −1 is the worst.

In case Ω = 0, the instantaneous quality, em, can be
related to the Bayesian a posteriori probability of m,
given an experience tuple. Also, the confidence value,
cm, can be seen as the a priori probability of selecting
m. The major difference between our method and a
Bayesian approach is that we do not normalize the
values by the marginal probability of the observation.
Non-normalized values give us absolute measurements
of quality, which are necessary in order to decide when
a new model must be created.

Once the instantaneous quality of the model has been
computed, a trace of quality Em for each partial model
is updated:

Em = Em + ρ

(
em − Em

)
(7)

where ρ is the adjustment coefficient for the quality.

The quality Em is updated after each iteration for
every model m, but only the active one is corrected
according to equations (1) and (2). Whenever some
model m becomes better than the current, mcur, the
system detects a context change and activates m. A
minimum quality threshold, Emin, is used to specify

219

Dealing with Non-Stationary Environments using Context Detection

how much a partial model can be adjusted. When
there is no model with quality higher than Emin, a new
one is created. RL-CD starts with only one model and
then incrementally creates new ones as they become
necessary. Note that, since the models are probabilis-
tic, the observations in a context don’t need to repeat
exactly in order to select the most appropriate model.

We formalize, in algorithm 1, the Reinforcement
Learning with Context Detection (RL-CD) method.

Algorithm 1 RL-CD algorithm
Let newmodel() be a routine which creates and ini-

tializes a new partial model.
Let mcur be the currently active partial model.
Let M be the set of all available models.
1: mcur ← newmodel()
2: M← {mcur}
3: s← s0, where s0 is any starting state
4: loop
5: Let a be the action indicated by πmcur (s)
6: Observe next state s′ and reward r
7: for all m ∈M do
8: Update Em according to (7)
9: end for

10: mcur ← arg maxm (Em)
11: if Emcur < Emin then
12: mcur ← newmodel()
13: M←M∪ {mcur}
14: end if
15: Update Tmcur

according to (1)
16: Update Rmcur according to (2)
17: Nm(s, a)← min(Nm(s, a) + 1,M)
18: s← s′

19: end loop

The newmodel() routine, used in algorithm 1, creates
a new partial model. This routine initializes the partial
model by: 1) setting its quality trace Em to zero; 2)
setting the values Rm(s, a) and Nm(s, a) to zero for
all s ∈ S and a ∈ A; and 3) initializing the transition
model as follows:

Tm(s, a, κ)← 1
| S |

∀s ∈ S,∀a ∈ A,∀κ ∈ S

The values of parameters M , ρ, Ω and Emin must be
tuned according to the problem. Small values of ρ are
appropriate for noisy environments; higher values of
M define systems which require more experiences in
order to gain confidence regarding its predictions; in
general applications, Ω might be set to 0.5; the min-
imum quality Emin should be set to negative small
values, since a zero quality means that the system has

not yet learned anything. Formal support for these
statements is being developed but detailed discussions
are not presented due to lack of space.

4. Empirical Results

In this section we present three validation scenar-
ios which evaluate how well our system performs in
non-stationary environments. The following exper-
iments use Prioritized Sweeping to build the policy
for each partial model. However, any other reinforce-
ment learning method could have been used, since our
mechanism is only responsible for detecting the con-
text changes and deciding when to create new models.
Even model-free methods can be used, but in that case
a representation of the transitions and expected re-
wards for each partial model has to be explicitly com-
puted.

4.1. Ball Catching

Our first validation scenario consists in a non-
stationary environment built as follows:

• The environment is a toroidal discrete grid of
15x15 cells;

• The agent is a cat whose goal is to catch a moving
ball;

• The moving ball starts in a random column and
row;

• The ball can take one of following behaviors: 1)
moves to the left; 2) moves to the right; 3) moves
down; or 4) moves up.

The non-stationary factor of the simulation is related
to the fact that the transition rules for the movement
of the ball change over time. In the current scenario,
Ω is set to 0 since the non-stationarity affects only the
transition model.

The first experiment performed aims at testing the
relative efficiency of the classic model-free and model-
based algorithms: Q-Learning (QL) and Prioritized
Sweeping with Finite Memory (PS-M)1. The agent is
trained for one of the ball behaviors at a time, until
the algorithm converges to the optimal policy. After
that, we change the environment dynamics by mod-
ifying the ball behavior and measure how fast each
algorithm converges. It can be seen in figure 1 that,

1We verified that standard PS requires exponential time
to converge in non-stationary environments, and thus we
designed and used PS-M, a modified PS with truncated
memory instead of maximum likelihood estimation.

220

Dealing with Non-Stationary Environments using Context Detection

as the context changes, the time needed to recalcu-
late the optimal policies, both in the model-free and
the model-based approaches, is much superior to the
convergence time of RL-CD. Although PS-M performs
better than Q-Learning, it still has to reestimate T af-
ter every context change. Our method, on the other
hand, takes only a few steps until realizing that the
context has changed. After that, it automatically se-
lects the most appropriate partial model for the new
dynamics.

Figure 1. A comparison of convergence times for Q-
Learning, PS-M and RL-CD (Ball Catching).

It is also important to measure the average time the cat
takes to catch the ball while the policy is being learned
in a context. In order to implement this experiment,
we ran the learning algorithms and changed the ball
behavior 8 times. For every algorithm, we performed 5
batches of 100 episodes, each episode corresponding to
the cat being placed in a random place and running af-
ter the ball. We measured the average time of a batch
as the average number of iterations needed to catch
the ball during all episodes. The results are shown in
figure 2.

In figure 2, vertical stripes are used to indicate differ-
ent contexts. Each time the ball behavior changes, the
average steps per episode grows (peaks in the graph),
indicating that the algorithms take some time to re-
learn how to behave. During the first 4 contexts, our
method is actually very similar to PS-M. However, as
soon as the contexts begin to repeat, RL-CD is capable
of acting optimally all the time, while the other algo-
rithms present periods of relearning and suboptimal
acting.

Finally, figure 3 presents the trace of quality Em for
each model m. Notice that our method creates 4 mod-

Figure 2. A comparison of performance for Q-Learning,
PS-M and RL-CD (Ball Catching).

els, each corresponding to a different environment dy-
namics. Also notice that during the first contexts not
all models were available, indicating that they were
created on-demand. The horizontal line at −0.1 cor-
responds to the minimum quality Emin. At every mo-
ment, the system selects the model with highest qual-
ity, and creates a new one if all models are worse than
Emin. Just like in the previous experiment, we use
stripes to indicate the current context of the environ-
ment.

Figure 3. Trace of the quality Em for all models (Ball
Catching).

We explicitly change the environment dynamics each
time the cat caught the ball for the 25th time. The
fact that the contexts last less as time goes by, as can
be seen in figure 3, indicates that the cat is able to pro-
gressively finish the 25 catches faster. In other words,

221

Dealing with Non-Stationary Environments using Context Detection

the system is able to promptly switch to the policy of
the model which best describes the new dynamics.

4.2. Traffic Lights Control

Our second validation scenario consists of a traffic net-
work which is a 3x3 Manhattan-like grid, with a traffic
light in each junction. Figure 4 depicts a graph rep-
resenting the traffic network, where the 9 nodes cor-
respond to traffic lights and the 24 edges are directed
(one-way) links.

S3 S4

S1

S7

S0

S6

G0 G1

S5

S2

S8

G2

G10

G11

G3

G4

G5

G6 G7 G8

G9

Figure 4. A Network of 9 Intersections.

Each link has capacity for 50 vehicles. Vehicles are
inserted by sources and removed by sinks, depicted as
diamonds in figure 4. The exact number of vehicles
inserted by the sources is given by a Gaussian distri-
bution. If a vehicle has to be inserted but there is
no space available in the link, it waits in an external
queue until the insertion is possible. The vehicles do
not change directions during the simulation, and upon
arriving at the sinks they are immediately removed.

We modeled the problem in a way that each traffic
light is controlled by one agent, each agent making
only local decisions. Although decisions are local, we
assess how well the mechanism is performing by mea-
suring global performance values. As a measure of
effectiveness for the control system, we measure the
total number of stopped vehicles.

After discretizing the length of queues, the occupation
of each link is considered to be either empty, regular or
full. The state of an agent is given by the occupation
of the links arriving in its correspondent traffic light.
The reward for each agent is given by the negative
summed square of incoming link’s queues.

Traffic lights normally have a set of signal plans used
for different traffic conditions and/or time of the day.
We consider here only three plans: signal plan 1 gives
equal green times for both directions (North-South,
East-West); signal plan 2 gives priority to the verti-

cal direction; and signal plan 3 gives priority to the
horizontal direction. The agent’s action consists of se-
lecting one of the three signal plans at each simulation
step.

In order to model the non-stationarity of the traffic
scenario, we assume 3 traffic patterns with different
car insertion distributions:

• Low : low insertion rate in the both North and
East sources, allowing the traffic network to per-
form relatively well even if the policies are not
optimal (i.e., the network is undersaturated);

• Vertical : high insertion rate in the North sources
(G0, G1, and G2), and average insertion rate in
the East (G9, G10, and G11);

• Horizontal : high insertion rate in the East sources
(G9, G10, and G11), and average insertion rate in
the East (G0, G1, and G2).

The Gaussian distributions in the contexts Vertical
and Horizontal are such that the traffic network gets
saturated if the policies are not optimal. Simultaneous
high insertion rates in both directions are not used be-
cause no optimal action is possible, and the network
would inevitably saturate in few steps, thus making
the scenario a stationary environment with all links at
maximum occupation.

Notice that this scenario is much harder than Ball
Catching, since it is probabilistic and it has three dif-
ferent causes for non-stationarity: 1) explicit changes
in insertion rates; 2) poor discretization; and 3) neigh-
bor traffic lights actions, which are hard (or impossi-
ble) to foresee.

In figure 5 we compare RL-CD performance with two
standard RL methods, namely Q-Learning and Prior-
itized Sweeping. We modify the traffic pattern every
200 time steps, which corresponds to nearly 3 hours
of real traffic flow. Moreover, we measure the per-
formance as the total number of stopped cars in all
links (including external queues). This means that,
the lower the value in the figure, the better the perfor-
mance.

Since Q-Learning is model-free, it is less prone to
wrong bias caused by non-stationarity. However, for
this same reason it is not able to build useful models
of the relevant attributes of the dynamics. Prioritized
Sweeping, on the other hand, tries to build a single
model for the environment and ends up with a model
which mixes properties of different traffic patterns. For
this reason, it can at most calculate a policy which is a

222

Dealing with Non-Stationary Environments using Context Detection

Figure 5. A comparison of performance for Q-Learning,
PS-M and RL-CD (Traffic Control).

compromise for several different (and sometimes oppo-
site) traffic patterns. RL-CD performs better than PS-
M specially in one of the three contexts. This occurs
because the model built by PS-M consists in a mixture
of all contexts, and the time between contexts is not
enough for it to relearn the new dynamics. Moreover,
RL-CD is clearly much more stable than Q-Learning
since it does not need to continuously readapt all of
its state–value estimations.

4.3. Ball Catching Revisited

As shown in subsections 4.1 and 4.2, approaches which
try to deal with non-stationarity by relearning, such
as PS-M, require higher convergence times due to the
need for rediscovering policies.

Alternative methods, such as those based on multiple
models, have been proposed. Due to their similarities
to RL-CD, we highlight the works of Doya et al. (2002)
and Choi et al. (2001), respectively called MMRL and
HM-MDP. HM-MDPs (Hidden Mode Markov Decision
Processes) are used to model non-stationary environ-
ments by considering the non-stationarity as an effect
of a hidden attribute, which is named mode. This ap-
proach assumes that the transitions between modes are
rare, and models each mode as an independent MDP.
The objetive is to learn a model of transitions for the
set of modes. Since the goal of HM-MDP is only to
model the non-stationary environment, no comparison
is performed with RL-CD.

The MMRL (Multiple Model-based Reinforcement
Learning) algorithm deals with non-stationarity by us-
ing multiple partial models of the environment. The

idea is to decompose a task into multiple domains in
which the environment is predictable. A responsibil-
ity signal is computed for each partial model in a way
that the models with better predictions are assigned
with higher responsibility values. The main differences
from MMRL to our approach are: 1) the former makes
use of special measures of spatial locality and tempo-
ral continuity; 2) MMRL does not decide actions based
only on the best model, but averages the actions pro-
posed by each model and weights them by the model’s
responsibility; 3) MMRL assumes that the number of
models (i.e. environment dynamics modes) is known a
priori ; and 4) MMRL requires fewer parameters than
RL-CD since it knows a priori the number of models.

Figure 6. A comparison of performance for Q-Learning,
Compositional Q-L, MMRL and RL-CD (Ball Catching
Revisited).

In (Doya et al., 2002), MMRL is compared with a
modified version of Compositional Q-Learning (CQ-
L) in a 7x7 ball-catching task similar to the one pre-
sented in subsection 4.1. CQ-L is a multiple modular
Q-Learning in which the probability of module selec-
tion is given by its capability of predicting the state–
value function. CQ-L, therefore, measures errors in the
state–values, while MMRL and RL-CD measure er-
rors regarding expected transitions and rewards. Doya
et al. (2002) modified Compositional Q-Learning, al-
lowing it to perform without requiring that environ-
ment changes be explicitly signaled to the algorithm.
In the following comparison, we use this modified ver-
sion of CQ-L.

In figure 6 we compare the performances of RL-CD,
MMRL, QL and CQ-L in Doya’s 7x7 ball-catching ex-
periment. Notice that this ball-catching scenario is
slightly different than one used in subsection 4.1. This
is because we now compare our method under exactly

223

Dealing with Non-Stationary Environments using Context Detection

the same conditions and parameters as the ones pro-
posed in (Doya et al., 2002), since these are the ones
which yield the best results for MMRL. In this exper-
iment, the ball direction changes after each episode,
and an episode lasts until the cat catches the ball or
100 steps. Since RL-CD is not able to detect con-
text changes when the contexts are too brief, perfor-
mance of RL-CD was computed changing the context
after each 5 episodes. In the very beginning of learn-
ing, we verified that all partial models of MMRL were
equally responsible for the entire domain. As the agent
learns, the models became more specialized in smaller
domains, allowing each model to better predict some
type of dynamics. Since in RL-CD only one partial
model is active at a time, its partial models specialize
faster than in MMRL. The downside of this is that
RL-CD’s selection mechanism is more susceptible to
noise.

5. Conclusions

In this paper we have formalized a method called RL-
CD for solving reinforcement learning problems in non-
stationary environments. Our method was validated
in deterministic and in noisy non-stationary environ-
ments. We have empirically shown that RL-CD per-
forms better than standard RL algorithms and that it
has advantages over methods specifically designed to
cope with non-stationarity.

A formal analysis of RL-CD parameters is being devel-
oped in order to help to tune them in scenarios which
differ significantly from the class of non-stationary en-
vironments we assume. We also plan to develop a
more detailed study regarding the trade-off between
memory requirements and model quality in highly
non-stationary and noisy environments, since RL-CD
might fail in case of scenarios with overlapping con-
texts. One possible solution for dealing with contexts
which are not readily separable by the dynamics is to
consider the model’s spatial locality when computing
the quality, allowing models to specialize in only a sub-
space of the state space. We have yet to study the ef-
fect on RL-CD of scenarios in which the time between
context changes is very short. Experimental results
show that RL-CD performs worse in these cases.

This research is still in its early stages. Experimen-
tal results so far point to the fact that RL-CD is a
good alternative to classic RL algorithms and also
to more sophisticated approaches, when dealing with
non-stationary environments. We expect to further
improve RL-CD by extending it with capabilities for
solving some of the downsides above mentioned, but
the results so far are undoubtedly promising.

Acknowledgments

Authors are partially supported by CNPq.

References

Choi, S. P. M., Yeung, D.-Y., & Zhang, N. L. (2000).
An environment model for nonstationary reinforce-
ment learning. Advances in Neural Information Pro-
cessing Systems 12 (pp. 994–1000).

Choi, S. P. M., Yeung, D.-Y., & Zhang, N. L. (2001).
Hidden-mode markov decision processes for nonsta-
tionary sequential decision making. Sequence Learn-
ing - Paradigms, Algorithms, and Applications (pp.
264–287). London, UK: Springer-Verlag.

Doya, K., Samejima, K., Katagiri, K., & Kawato, M.
(2002). Multiple model-based reinforcement learn-
ing. Neural Computation, 14, 1347–1369.

Kaelbling, L. P., Littman, M., & Moore, A. (1996).
Reinforcement learning: A survey. Journal of Arti-
ficial Intelligence Research, 4, 237–285.

Moore, A. W., & Atkeson, C. G. (1993). Prioritized
sweeping: Reinforcement learning with less data and
less time. Machine Learning, 13, 103–130.

Silva, B. C., Basso, E. W., Bazzan, A. L., Engel, P. M.,
& Perotto, F. S. (2006). Improving reinforcement
learning with context detection. Fifth International
Joint Conference on Autonomous Agents and Multi
Agent Systems - (AAMAS 2006) – to appear. Hako-
date, Japan.

Singh, S., James, M. R., & Rudary, M. R. (2004). Pre-
dictive state representations: a new theory for mod-
eling dynamical systems. AUAI ’04: Proceedings of
the 20th conference on Uncertainty in Artificial In-
telligence (pp. 512–519). Arlington, Virginia, United
States: AUAI Press.

Singh, S. P. (1992). Reinforcement learning with a
hierarchy of abstract models. Proceedings of the
Tenth National Conference on Artificial Intelligence
(AAAI) (pp. 202–207).

Sutton, R. S., Precup, D., & Singh, S. P. (1999). Be-
tween MDPs and semi-MDPs: A framework for tem-
poral abstraction in reinforcement learning. Artifi-
cial Intelligence, 112, 181–211.

224

