
Exception Handling Patterns
for Process Modeling

Barbara Staudt Lerner, Stefan Christov, Student Member, IEEE, Leon J. Osterweil, Member, IEEE,
Reda Bendraou, Udo Kannengiesser, and Alexander Wise

Abstract—Process modeling allows for analysis and improvement of processes that coordinate multiple people and tools working
together to carry out a task. Process modeling typically focuses on the normative process, that is, how the collaboration transpires

when everything goes as desired. Unfortunately, real-world processes rarely proceed that smoothly. A more complete analysis of a
process requires that the process model also include details about what to do when exceptional situations arise. We have found that, in

many cases, there are abstract patterns that capture the relationship between exception handling tasks and the normative process.
Just as object-oriented design patterns facilitate the development, documentation, and maintenance of object-oriented programs, we

believe that process patterns can facilitate the development, documentation, and maintenance of process models. In this paper, we
focus on the exception handling patterns that we have observed over many years of process modeling. We describe these patterns

using three process modeling notations: UML 2.0 Activity Diagrams, BPMN, and Little-JIL. We present both the abstract structure of
the pattern as well as examples of the pattern in use. We also provide some preliminary statistical survey data to support the claim that

these patterns are found commonly in actual use and discuss the relative merits of the three notations with respect to their ability to
represent these patterns.

Index Terms—Exception handling patterns, process modeling, process modeling languages.

Ç

1 INTRODUCTION

A process is a sequence of activities undertaken to
produce a product or other desired result. Most often a

process entails the collaboration of one or more humans and
one or more automated entities, such as machines or data
processing systems. Processes are increasingly the objects of
interest and study as their role in such diverse domains as
manufacturing, healthcare, business, and government be-
comes more prominent. The pivotal importance of being
sure that processes in such domains are efficient and free of
defects has led to growing interest in how best to represent
these processes with models. Such models can be used as
the subjects of analyses that are aimed at suggesting
improvements both to how the processes are performed
and indeed to the processes themselves. To understand and
analyze a process fully, it is important for a process model
to include descriptions of the process behavior under

exceptional circumstances. This paper focuses on common
approaches to exception handling in real-world processes
and issues that arise when specifying precisely these
exception handling approaches in different process model-
ing notations.

For the purposes of this paper, we consider a process
model to be composed of tasks along with specification of
the data and control flow between those tasks. Data flow
specifications indicate how the data items generated in one
task are used in later tasks, while control flow specifications
provide task sequencing information, such as branching,
iteration, and parallelism, which effect the coordination of
the actors carrying out the individual process tasks. The
actors might be humans or mechanical devices, or software
systems such as Web services, depending on the nature of
the task. Process models may further identify resources that
are needed to support the actors in their efforts to complete
a task. Tasks may have deadlines associated with them.

Process models typically represent how all of these types
of entities are related and coordinated in order to support
better understanding of the processes being modeled and to
support analysis that could lead to improvements to the
processes. Examples of the coordination understandings
typically sought are these: Which actors should perform
which tasks? When does a task need to be done? What
information and resources does an actor need to complete
its tasks? Process improvements can then be supported
either by following the dictates of models that have been
improved or by having such models actually guide the
performance of some or all of the process tasks. In
particular, a process model with sufficient details can be
used to guide the assignment of tasks to actors, the
allocation of resources to tasks, the collection of the results

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. XX, XXXXXXX 2010 1

. B.S. Lerner is with the Computer Science Department, Mount Holyoke
College, 50 College Street, South Hadley, MA 01075.
E-mail: blerner@mtholyoke.edu.

. S. Christov, L.J. Osterweil, and A. Wise are with the Department of
Computer Science, University of Massachusetts, 140 Governors Drive,
Amherst, MA 01003. E-mail: {christov, ljo, wise}@cs.umass.edu.

. R. Bendraou is with the Université Pierre & Marie Curie, LIP6/MoVe,
B811 104 Av. du président Kennedy, Paris F75016, France.
E-mail: reda.bendraou@lip6.fr.

. U. Kannengiesser is with the NICTA, Alexandria NSW 1435, Australia,
and the School of Computer Science and Engineering, University of New
South Wales, Sydney NSW 2052, Australia.
E-mail: udo.kannengiesser@nicta.com.au.

Manuscript received 8 May 2009; revised 24 Sept. 2009; accepted 9 Dec. 2009;
published online 6 Jan. 2010.
Recommended for acceptance by Garcia, Issarny, and Romanovsky.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-2009-05-0122.
Digital Object Identifier no. 10.1109/TSE.2010.1.

0098-5589/10/$26.00 ! 2010 IEEE Published by the IEEE Computer Society

of performing tasks and transfer of such results to other
tasks requiring them, and the monitoring of task deadlines.
The real work of a process is typically done by the actors,
but much of the coordination and monitoring of the
progress of the tasks of a process can be effected by the
execution of such a process model.

Process models have been used in many application
domains, such as software engineering [1], [2], [3],
business [4], [5], [6], [7], healthcare provision [8], [9], [10],
and e-government [11], [12], [13], [14].

1.1 Exceptions in Processes

While creating a process model, the modeler typically begins
by capturing the normative, or desirable, behavior of the
process. This behavior is modeled by defining the coordina-
tion among the tasks, artifacts, and actors that the modeler
expects to occur when everything goes well. For example,
planning a trip typically involves identifying the dates of
travel, securing one or more hotel reservations, booking
flights, perhaps renting a car, andmaking sure that the travel
schedule is consistent with the plans of all people who are
relevant to the travel. This can be modeled as a collection of
tasks involving different actors, with some tasks happening
in parallel and others sequentially, all having deadlines and
with some, like scheduling a time for a meeting with a
person to be visited, risking conflicts and contention which
will have to be resolved. This normative desirable behavior
is sometimes referred to as the “happy path.”

Once the normative behavior has been modeled, the
modeler should next think about what might go wrong.
What if the desired hotel is fully booked on the requested
days? What if the airfare requested by the airline is
unexpectedly high? What if a Website needed to complete
a reservation is unavailable? What if the person who is to be
visited will not be available on any of the days when the trip
is planned? In any but the most trivial processes, opportu-
nities for problems like these can be expected to arise from
time to time. People or needed resources might be unavail-
able when they are needed, the actions they take might be
incorrect or inappropriate, or deadlines might not be met. In
each of these cases, additional action is required beyond the
normative path. We refer to these deviations from the happy
path as exception handling and the conditions that lead to
these additional actions as exceptions. In some cases,
exceptions might not be particularly unusual or surprising,
such as when trying to book a flight the day before a trip.
Nevertheless, handling these conditions requires expanding
the process beyond the “happy path.” In real processes, the
number and complexity of these exceptional situations are
typically quite large, and the need to assure that they are all
handled as efficiently and correctly as possible may be quite
important. Process models can and should be used to
support the understanding of these exceptional situations
and their handling in order to support such assurance. Thus,
it is of considerable importance to not only specify precisely
the normative behavior of a process, but also to provide a
precise definition of a process’s exceptional behaviors and
how they should be handled. Specifying exceptional
behavior requires, at the least, identifying the tasks in which
exceptions are known to occur, identifying exactly what each
exception is, understandingwhat tasks and subprocesses are

needed to handle each exception, and specifying how to
proceed once each exception has been handled.

We believe that process models that do not specify these
behaviors carefully and precisely are incomplete and
inadequate. Thus, we are unsatisfied with the approach of
dealing with exceptions by allowing a process model to be
modified dynamically in real time when an exception occurs
(for example, as suggested in [15]). This may be acceptable in
situations where a completely unexpected situation has
arisen or where (as in the case of a process for “planning a
trip”) improvisation, which might lead to tardy or imperfect
process performance, may be acceptable. In the case of
processes used in critical domains such as medical care,
however, it is imperative that a process model represent
behaviors to undertake when all undesirable, but not
unexpected, situations arise. Thus, for example, the surgical
team that is about to perform heart surgery (and the patient!)
must know that the team has efficient and effective plans for
dealing with any of the many undesirable events that might
occur during surgery. By modeling behaviors for handling
undesirable situations as precisely and completely as
possible, the model can provide the basis for analysis aimed
at assuring the correctness of the handling of exceptions.
During process execution, the actors remain responsible for
identifying exceptional conditions, carrying out the needed
exception handling, and assuring that the exception hand-
ling is successful. In some domains, such well-defined
processes may be primarily used for training the people who
will participate in the processes, while in other domains,
they might serve as reliable sources of guidance to the actors
while performing the process.

Incomplete process models, including those that fail to
model exceptional situations and their handling, can result
in misunderstandings between the actors performing the
processes, which, in turn, can lead to errors with serious
consequences. In the medical domain, imprecise or missing
specification of how a process should deal with exceptional
situations can lead different people to handle the same
situation differently, based on personal style, level of
experience, and the actions of other people [8]. Yet,
Henneman et al. [16] observe that models of medical
processes often capture only the normative process and
leave out specification of how to handle exceptions. This
makes it impossible to analyze whether or not the handling
of exceptions preserves process properties that are required
or desirable. Consequently, this may result in inconsistent
handling of exceptions, which creates the potential for
errors due to misunderstandings.

Because we believe that it is essential that process models
incorporate adequate specifications of exception handling,
we have paid considerable attention to exceptional scenar-
ios in our work with processes. Our experience has
suggested that there are standard ways in which the actual
performers of processes tend to deal with exceptions. These
standard exception management approaches can be identi-
fied sufficiently well that they might then be represented
clearly as integral and key features of process models,
thereby making those process models much more complete
and suitable as bases for analysis and improvement. Thus,
the work we describe here has two objectives: 1) the

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. XX, XXXXXXX 2010

identification of standard exception management ap-
proaches and 2) the clear representation of these approaches
as components of models of processes that incorporate
exception management.

1.2 Exception Handling Patterns in Processes

To address the first objective of this paper, we have
explored the use of patterns. The notion of patterns gained
prominence in the computer science community with the
publication of Design Patterns: Elements of Reusable Object-
Oriented Software [17] in 1994. In this seminal work, Gamma
et al. observed how the mechanisms commonly found in
object-oriented languages, principally classes, inheritance,
and polymorphism, can be combined in specific ways to
solve common design problems. The introduction of design
patterns raised the level of abstraction with which pro-
grammers and designers could discuss software. It is now
possible to speak of Singletons or Visitors, for example, as a
common abstraction, simplifying the development and
documentation of software, and the ease of understanding
and maintaining that software.

There is a growing body of research into exception
handling patterns for application programming languages
as well. Stelting [18] describes how to use design patterns to
manage exceptions. For example, the Singleton pattern can
be used to eliminate unnecessary creation of exception
objects, or the Adapter pattern can be used to translate
exceptions between legacy software and the calling code.
Haase [19] describes exception handling idioms in the
context of Java programming. Longshaw and Woods [20],
[21] describe patterns of exception handling for multitier
information systems. For example, they define the Log at
Distribution Boundary pattern, which states that errors with
technology, such as inability to connect to a database,
should be logged in detail on the system on which they
occurred with only summary information passed back over
the distribution boundary.

Simultaneously, there is growing interest in identifying
patterns within the process and workflow community. The
concept of process patterns has been explored by Coplien
[22] and later by Ambler [23]. The patterns they identify
focus on the domain of software development, identifying
common ways of addressing recurring software develop-
ment activities, such as software release. Thus, they focus
on domain-specific patterns, whereas our focus is on
domain-independent patterns.

Russell, van der Aalst, and ter Hofstede have begun to
investigate the occurrence of patterns within workflow.
They categorize patterns in four workflow definition
semantic domains: control flow [24], [25], data flow [26],
resources [27], and exception handling [28]. Their control
flow patterns follow the usual approach taken in the pattern
community of identifying solutions to common problems.
In contrast, their exception handling patterns lack the focus
on common problems and instead define patterns by
considering a large number of combinations of the under-
lying exception handling mechanisms. The approach that
we take in this paper is to focus on the common problems
that can be solved with exception handling. We return to a
more careful comparison of our work with this exception
handling patterns work in Section 5.

Our experience in defining processes in a variety of
domains has indicated that certain behaviors recur fre-
quently and thus seem to comprise specifiable patterns that
are very much in the same spirit as design and program-
ming language patterns. The identification and the sub-
sequent use of such patterns have facilitated writing and
reasoning about processes that employ these patterns. Some
of these patterns deal specifically with exceptions and their
handling. Thus, we believe that recognition of exception
handling patterns and use of standard idioms to encode
them can lead to improved readability and understand-
ability of process definitions.

1.3 Defining Exception Handling Patterns in
Process Languages

To address the second objective of this paper, we advocate
the use of process modeling languages that incorporate
specific facilities for strongly supporting the modeling of
process exceptional situations and their handling. An
appropriately articulate language, for example, would be
one that facilitates the desired clear separation of excep-
tional behavior from normative behavior and can serve as a
vehicle for keeping large and complex process definitions
under intellectual control. It is commonly believed that
support for the explicit specification and handling of
exceptions in application programming languages such as
Java makes programs written in these languages clearer and
more amenable to effective intellectual control. Osterweil’s
work [29] suggests that this is no less important and no less
feasible in a process model and process language than in
application software and programming languages.

Exception handling mechanisms in modern application
programming languages generally consist of:

. a mechanism to throw or raise an exception,

. a mechanism to propagate an exception along with
necessary data to code that can deal with the
exception,

. a mechanism to catch or handle the exception, and

. a mechanism to resume execution of the normative
behavior.

Adding similar mechanisms to a process modeling
language gives a process modeler similar capabilities when
modeling processes. Nevertheless, different process model-
ing languages include different constructs that interact with
exception handling in interesting ways, which turns out to
have a significant impact on how clearly and precisely the
different languages are able to represent the patterns that
we are discovering. Hence, this paper also attempts to
demonstrate how three different process modeling lan-
guages could be used to represent these patterns. It is hoped
that this investigation will lead to improvements in process
modeling language facilities for dealing with exceptions,
and thus, will also lead to the development of process
models that represent exception handling more completely
and more clearly.

1.4 Approach

The work described in this paper was triggered by a
significant body of experiences in using a specific process
modeling language, Little-JIL, to define processes in a

LERNER ET AL.: EXCEPTION HANDLING PATTERNS FOR PROCESS MODELING 3

variety of domains, including healthcare [8], [10], labor
management dispute resolution [14], software development
[1], and elections [11], [12], [13]. Members of our research
team have defined processes in each of these domains, and
some of the processes have been nontrivial in size,
consisting of hundreds of steps. In the course of defining
these processes, our team members have recognized strong
similarities among the ways in which the domain experts
have described how they deal with exceptional situations.
This led to careful attempts to characterize and categorize
these different approaches to exception handling.

Initially, we informally identified three different philo-
sophical approaches:

. Presenting alternative means to perform the same
task. Thus, for example, if one hotel has no
vacancies, we will try other hotels, or stay at the
home of a friend or relative.

. Inserting additional tasks before returning to the
normative process. Thus, for example, if the passen-
ger’s name is wrong on the itinerary after purchas-
ing a plane ticket, then the passenger may need to
perform the extra work of contacting the airline to fix
that problem.

. Aborting the current processing. If there is no date
and time at which all key people can be present at a
meeting, then the whole trip might be canceled,
possibly requiring the cancellation of various travel
arrangements.

Our attempts to be precise about these three categories of
exception handling then led us to consider representing
each as a pattern. This, in turn, suggested the need for a
process representation formalism that would be suitable for
defining these patterns. We considered three different
process modeling notations, UML 2.0 activity diagrams
[30], BPMN [31], and Little-JIL [32], as vehicles for defining
these patterns, and found that each had identifiable
strengths and weaknesses, leaving no notation that was
clearly superior to the others.

We have selected UML 2.0 because it is in wide general
use, with Activity Diagrams having specific application to
the modeling of processes. Unfortunately, as will be seen,
we found that using UML 2.0 can make it hard to say things
that should be easy.

We have selected BPMN because it is particularly
popular for process modeling in many business domains,
and hence, we expected that it should be a strong vehicle for
being clear about process patterns. Unfortunately, BPMN is
not supported by a formal definition of its semantics. Thus,
although BPMN models can seem to be clear, the lack of
semantics makes it difficult to be sure that the precise
meaning of a BPMN process (or pattern) definition is clear
and understood equally by all readers.

The third notation that we have selected is Little-JIL
because it seems to support process (and pattern) defini-
tions that are both clear and precise. In addition, as it is a
language that many of the authors of this paper have
designed and implemented, we felt that using it in this way
would facilitate the evaluation of this language and suggest
ways in which it might be improved. It is also a notation

where we had easy access to large, real processes that we
could evaluate.

Thus, this paper uses all three notations to define
patterns and illustrate their use. The paper also discusses
the strengths and weaknesses of the three notations in
supporting both the definitions of the patterns, and the
specification of exception handling in processes in general.

The paper begins by defining the exception handling
patterns that we have identified. Each pattern is first
described informally, then we show how the pattern would
be represented in two of the process notations whose
language features show interesting alternatives in how the
patterns can be expressed. For each pattern, we provide
examples of the pattern as well as common variations of
the pattern.

The paper also provides statistics that report the relative
frequency of the use of the different patterns in example
process definition. This is intended to support our claims
that these observed practices are sufficiently frequently
used and widespread to be considered to be patterns. The
paper’s discussion section reflects on the role of these
patterns in larger processes as well as the ability of the three
notations to capture these patterns succinctly. The paper
concludes with sections on related and future work. The
paper also includes an Appendix in which we briefly
describe the features of the notations that are used in the
pattern descriptions to provide clarification to readers
unfamiliar with any of the notations.

2 EXCEPTION HANDLING PATTERNS

In software engineering, patterns are best known in the
context of object-oriented design. Object-oriented design
patterns [17] present interesting ways to combine classes
and define methods to address common design problems,
allowing designers to reuse high-level solutions to problems
rather than reinventing solutions for each new design
problem. Similarly, we have found that there are interesting
ways to define higher level exception handling patterns that
address common exception handling problems. These
patterns arise through particular combinations of the
location where an exception is thrown, where the exception
is caught, and where control flows after the exception is
caught. Thus, it is not just the exception handling mechan-
ism that is of interest, but how that mechanism is used
within the context of reaching a particular process objective.
The end result is to allow process designers to think in
terms of these patterns and to be able to recognize when
these patterns are useful within a process. By reusing a
pattern, the process designer is relieved of the burden of
designing every detail of every process from first principles
and can instead use the patterns to guide the designer in the
appropriate use of the mechanisms offered by the language.

In this section,webriefly introduce the exceptionhandling
patterns that we have identified. Following the style intro-
duced in the classicDesign Patterns book [17],wepresent our
patterns as a catalog. For each pattern, we provide:

. its name;

. its intent—what recurring behavior the pattern
captures;

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. XX, XXXXXXX 2010

. its applicability—in what situations the pattern
should be used;

. its structure—the general structure of the pattern
expressed in two different process definition
formalisms;

. its participants—the roles played by different parts
of the process that contribute to the pattern;

. two examples of process fragments that use the
pattern;

. variations—small changes that can be made in the
application of a pattern to get slightly different effects.

We organize the patterns into a set of categories. We
describe the nature of each category and then present the
specific patterns that it contains. Our examples are drawn
from different domains to suggest the generality of the
patterns.

2.1 Trying Other Alternatives
One common category of exception handling patterns
describes how to deal with decisions about which of several
alternative courses of action to pursue. In some cases, such
decisions are based upon conditions that can be encoded
directly in the process, essentially using an if-statement to
make the choice. In other cases, however, it may be difficult
to capture a priori all conditions for which each course of
action is best suited. In these cases, it is often most effective
to just present the process performer with alternatives to
try. If the alternative that is tried fails, another alternative is
to be tried in its place, using exception handling to move on
to untried alternatives. In this category, we have identified
two different exception handling patterns: ordered alter-
natives and unordered alternatives.

2.1.1 Pattern Name: Ordered Alternatives

Intent. There are multiple ways to accomplish a task and
there is a fixed order in which the alternatives should be
tried. Provision must be made for the possibility that no
alternatives will be successful.

Applicability. This pattern is applicable when there is a
preferred order among the alternatives that should be tried
in order to execute a task.

Structure. The Little-JIL diagram in Fig. 1 depicts the
structure of the Ordered Alternatives pattern. Processes are
represented in Little-JIL as hierarchical decompositions into
steps. Here, we see the step named Task with three
substeps, each defining one way to complete the task. The
icon at the left end of the black step bar of Task indicates
that this is a Try step. The semantics of the Little-JIL Try
step match the definition of this pattern quite closely, as the
Try step semantics specify that the step’s children represent

alternatives that are to be tried in order from left to right. If
an alternative succeeds, the parent step is completed and no
more alternatives are offered. If execution of an alternative
throws an exception, the exception is handled by the
handler attached to the Try step by the rightmost edge. The
icon associated with the exception handler indicates that
the Try step should continue with the next alternative. This
continues until one of the alternative substeps succeeds. If
none of the substeps succeeds, a special exception, called
NoMoreAlternatives, is thrown. This exception must be
handled by an ancestor of the Try step. Indicating that all
alternatives have failed is part of the pattern, but the
handling of that exception must take place in the context in
which the pattern is used rather than as part of the pattern.

Neither BPMN nor UML have a construct similar to the
Try step in Little-JIL. The result is that this pattern is
expressed by chaining together the alternatives with
exception handlers as shown in the UML Activity Diagram
in Fig. 2. A root activity, in the figure called OrderedAlterna-
tivesPattern, is used as a context to call the execution of the
Normative activity. This call is ensured by a CallBehavior-
Action, which, in UML, represents the means to call an
activity from within another one. Normative activity con-
tains a set of actions to be performed by the agent and
which are enclosed within a StructuredActivityNode, a
structured portion of the activity that is not shared with any
other portion and which can be protected by an Exception
Handler. Any exception caused by the execution of any
action within the structured node and having a type
corresponding to the exception types handled by the
handler will be caught by the exception handler. If an
exception occurs, the control flow is terminated within the
structured node and the flow is transferred to the Exception
Handler. The exception handler will then call the first
alternative, which is represented in Fig. 2 by the Alternative 1
activity using another CallBehaviorAction. The actions in
the Alternative 1 activity may also be protected by an
Exception Handler, which may call a second alternative if
Alternative 1 fails as well. In case of no other alternatives,
Alternative 2 will terminate, causing the NoMoreAlternatives
exception to propagate to the call action that invoked

LERNER ET AL.: EXCEPTION HANDLING PATTERNS FOR PROCESS MODELING 5

Fig. 1. Structure of the Ordered Alternatives pattern in Little-JIL.

Fig. 2. Structure of the Oordered Alternatives pattern in UML.

Alternative 2, then to the parent activity owning the call
action, and so on.

Participants. This pattern has three types of participants:
the menu, the alternatives, and the continuer. The menu is
the portion of the process that organizes the alternatives into
an order. The alternatives are the various ways in which the
desired task can be carried out. While the figures show three
alternatives, there is no limit to the number of alternatives
that could be used in this pattern. Each alternative, except
possibly the last, must have the potential to throw an
exception that causes consideration of the next alternative.
The continuer is the exception handler that indicates that the
process should continue to the next alternative.

Sample code and usage. Fig. 3 shows the use of the
Ordered Alternatives pattern in a Little-JIL process to plan
travel to attend a conference. This pattern can be seen in the
Reserve hotel step. Here, the process requires first trying to
get a reservation at the conference hotel before considering
other hotels. If the conference hotel is full, the HotelFull
exception is thrown. This is handled by causing the Book
other hotel step to be attempted next.

Fig. 4 shows the UML implementation of the Hotel
Reservationprocess. Themainactivity calls theBookConference
Hotel activity using a CallBehaviorAction. The Book Con-
ference Hotel activity contains a sequence of actions defined
within a Structured Activity Node which is protected by an
Exception handler. The body of the Exception handler
consists of a call to the Book Other Hotel activity and is
triggered if an action within the protected node fails.

Variations. One variation of this pattern uses Boolean
conditions after an alternative is tried, rather than expecting
the alternative to throw an exception. If the condition
evaluates to true, it means that the alternative has
succeeded. If the condition evaluates to false, it means that
the alternative failed and the process should proceed to the
next alternative. The trade-off here is essentially the same as
we see in procedural programming when deciding whether
a function should return a status value to indicate whether
it has succeeded or it should throw an exception.

If the conditions under which an alternative will succeed
are known in advance, the alternatives are better repre-
sented with a construct similar to an if-else construct in a
traditional programming language. This allows the orders
to be specified while avoiding the need for exception
handling. This is the Exclusive Choice pattern presented as
a control flow pattern by van der Aalst et al. [24].

2.1.2 Pattern Name: Unordered Alternatives

Intent. There may be multiple ways of accomplishing a
task, but there are occasions when a fixed order in which

alternatives are to be tried is either not known or not
desired. If an exception occurs while trying one way, an
alternative other than all of those that have been tried
previously is to be tried instead. This is to continue until an
alternative succeeds or until all alternatives have been tried
and have failed. In this latter case, the failure of all
alternatives is signaled as an exception to be handled by
the process context in which this pattern is embedded.

Applicability. This pattern applies when there are
multiple ways to accomplish a task and it is not known
a priori which way is the most appropriate. In this case, the
decision of the order in which the alternatives are tried is
deferred until runtime. If an attempted alternative fails,
there is another attempt to complete the task by choosing a
different alternative. There may be multiple factors that
influence the order in which the alternatives are tried. For
example, the state of the process or the state of the artifacts
being manipulated by the process may influence the order.
Additionally, some alternatives may require different
resources than others, so resource availability may influ-
ence the order in which the alternatives are considered. The
knowledge of the actors participating in the process may
also influence the order in which alternatives are tried. In
particular, a human actor might use information about the
outcomes of attempting previously tried alternatives to
determine which alternative is to be tried next. Note that the
pattern would have the same structure, independent of the
factors that influence the ultimate order that is chosen, since
in this case, the factors influencing the order are dynamic
while the pattern captures only static information. In this
way, the Ordered Alternatives pattern can represent either
internal or external nondeterministic choice.

Structure. The Little-JIL diagram in Fig. 5 depicts the
structure of the Unordered Alternatives pattern. This pattern
is the same as the previous one except that a Choice step is
used rather than a Try step. This is indicated by the icon at
the left end of the black step bar for Task. The semantics of
the Little-JIL Choice step match the definition of this pattern

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. XX, XXXXXXX 2010

Fig. 3. Using the Ordered and Unordered Alternative patterns when
planning a trip.

Fig. 4. Using the Ordered Alternative pattern to select a hotel.

quite closely as the Choice step semantics specify that the
step’s children represent the alternatives that are to be tried,
without indicating any order. The semantics of the Choice
step specify that only one alternative is to be tried. If the
chosen alternative is successful, the task is complete. If the
alternative is not successful, then an exception is thrown,
resulting in the alternatives that have not yet been attempted
to be presented to the agent. As with OrderedAlternatives, if
all alternatives fail, the NoMoreAlternatives exception is
thrown and should be handled in the context in which the
pattern is used. In the figure, there are three alternatives to
choose from, but, in general, there can be an arbitrary
number of alternatives.

Again, neither UML nor BPMN have a control construct
similar to the Little-JIL choice step. In these notations,
Unordered Alternatives are represented using a conditional
construct to determine which alternative the user selected.
If the selected alternative fails, control loops back to allow
the user to select again. Fig. 6 shows the UML representa-
tion of the Unordered Alternatives pattern. Here, the
ConsiderUserChoice action allows the user to make a
selection. The Conditional Node contains a test and body
for each alternative. If the selected alternative succeeds, the
Unordered Alternatives are complete. If not, an exception is
thrown. The exception handler updates the list that the user

can choose from. If more choices remain, control flows back
to the action that presents the modified list to the user.

Participants. Like Ordered Alternatives, this pattern has
three types of participants: the menu, the alternatives, and
the continuer. Themenu defines the alternatives, but, in this
case, the order of the alternatives has no semantics. The
alternatives are the various ways in which the task can be
carried out. Each alternative should throw an exception that
can then be handled to allow the other alternatives to be
attempted. The continuer is the exception handler that
causes the other alternatives to be reconsidered.

Sample code and usage. Fig. 3 also shows the steps
involved in reserving a flight for a trip. Here, the user can
choose either to use Southwest or to use Travelocity to
reserve a flight on other airlines (since Travelocity does not
list Southwest flights). If there is no flight available using
the first service chosen, an exception is thrown. The
exception handler continues the Reserve flight step by letting
the user try the other alternative.

Fig. 7 shows the unordered alternative pattern being used
to select a shipper. If a shipper cannot meet the delivery
requirements, an exception will be thrown. The exception is
handled by allowing the user to try the other shipper.

Variations. As the pattern is presented here, each time
that an alternative fails, only the alternatives that have not
yet been tried are allowed. In another variation, all
alternatives are allowed each time. There are advantages
and disadvantages to each. It could be that the alternatives
themselves have a lot of substructure to them. Thus, it may
be possible that the same alternative could be done
multiple times, with different results each time. In that
case, it would be preferable to allow all the alternatives
each time. On the other hand, if each alternative always
produces the same result no matter how often it is tried, it
is important to remove alternatives from consideration as
they are attempted to avoid an infinite loop.

LERNER ET AL.: EXCEPTION HANDLING PATTERNS FOR PROCESS MODELING 7

Fig. 5. Structure of the Unordered Alternatives pattern in Little-JIL.

Fig. 6. Structure of the Unordered Alternatives pattern in UML.

Fig. 7. Using the Unordered Alternative pattern to select a shipper.

2.2 Inserting Behavior
Another frequently observed approach to addressing a
process specification problem is to insert additional actions
that are needed in order to fix problems that have been
identified during execution of some task. A major char-
acteristic that distinguishes different fixing patterns is the
timing of the fixing activity with respect to when the
exception is identified. In Immediate Fixing, the problems
are addressed before continuing with the task, whereas in
Deferred Fixing the problem is noted, perhaps worked
around, and then,addressed fully at some future point.

Another important consideration is the nature of the
fixing activity. One possibility is for the fixing activity to be
an entirely new activity designed specifically for the purpose
of handling the specific exception. Another possibility is for
the fixing activity to incorporate repetition of previous
activities, resulting in a Retry or Rework pattern.

In this section, we first show the Immediate and
Deferred Fixing patterns. Then, we show how Retry can
be used to repeat a task at the time that it fails. Finally, we
show a more general Exception-Driven Rework pattern in
which a task’s failure is not detected immediately, requiring
the task to be reexecuted at a later time.

2.2.1 Pattern Name: Immediate Fixing

Intent.When a nonnormative situation is noted, an action is
taken to address the problem that caused this situation
before continuing with the remainder of the process.

Applicability. This pattern allows the insertion of extra
behavior to handle expected, but nonnormative, situations.
It is useful in situations where some potentially disruptive
problem may occur and a simple procedure exists to
address the problem in such a way that the process can
nevertheless continue.

Structure. Fig. 8 shows the structure of the Immediate
Fixing pattern in BPMN. Here, the nonnormative situation
is represented as an Intermediate (catch) Event attached to
the boundary of a Task. When an Event with one of the
specified triggers is detected, the flow of the process is

instantly redirected through the Intermediate Event,
interrupting any remaining work within the Task. The
new process path is called Exception Flow. In the figure,
the Exception Flow leads to a fixing activity before
rejoining the normative path (called Normal Flow). The
use of the control flow edges to place the exception handler
in the process makes it very clear where control flows upon
completion of the exception handler.

Control flow following exception handling is not
represented explicitly in either UML or in Little-JIL. In
UML, it depends upon where the exception handler is
attached, while Little-JIL additionally requires knowledge
of the semantics of the continuation icons being used. Fig. 9
shows the structure of the Immediate Fixing pattern using
UML. If any exception occurs during the execution of the
Task activity (details of the activity not represented in the
figure), the exception is propagated to the CallBehavior-
Action that initialized the activity call. The exception is
then caught by the Exception Handler, which calls the Fix
activity. After having fixed the problem, the process
continues its execution by calling the Next Task activity.

Participants. There are two participants in the Immediate
Fixing pattern: the anomaly detector and the fixer. The
anomalydetector is the portion of the process that recognizes
that an anomaly has occurred and notifies the process by
throwing an exception. The fixer is the exception handler that
fixes the problem and allows the process to resume.

Sample code and usage. Fig. 10 shows an example
BPMN process in software development that demonstrates
the Immediate Fixing pattern. Immediate Fixing handles
exceptions caused by compilation errors that may occur in
the Sub-Process Code the Modules (that is executed multiple
times). After fixing the error, the control flow for this
instance of coding terminates.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. XX, XXXXXXX 2010

Fig. 8. The structure of the Immediate Fixing pattern in BPMN.

Fig. 9. The structure of the Immediate Fixing pattern in UML.

Fig. 10. Using the Immediate and Deferred Fixing patterns in software development.

Variations. In addition to inserting behavior, it is also
possible to use this pattern to skip some tasks in the process
that are inappropriate in the context of the exception. This is
accomplished by placing the exception handler at the
appropriate level of the calling hierarchy.

2.2.2 Pattern Name: Deferred Fixing

Intent.When a nonnormative situation is noted, action must
be taken to record the situation and possibly address the
situation either partially or temporarily because addressing
the situation fully is either not immediately possible or not
necessary. Later in the process, an additional action needs to
be taken to complete the recovery from the condition that
caused the occurrence of the nonnormative situation.

Applicability. This pattern is useful in preventing the
process from coming to a halt even though the potentially
disruptive effects of an unusual, yet predictable, situation
cannot be addressed completely. The pattern is useful in
those cases where addressing the problem definitively is
possible only when more time or information becomes
available, where the need for further work to complete the
handling of the exception can be captured in the state of
the process, and where temporary measures can enable the
process to proceed to the point where such additional time
and information have become available.

Structure. Fig. 11 is a Little-JIL depiction of the structure
of this pattern. In Fig. 11, an exception is thrown during the
execution of Substep 1. The exception is handled by Do
temporary fix, an exception handler that makes some
expedient temporary adjustment records the need for a
more complete fix, and then, returns to regular processing,
as indicated by the continue handler. However, at some
later stage of the process, an additional step (or collection of

steps), represented by the step Some step, must be executed
to either complete the handling of the nonnormative
condition or check that the nonnormative condition no
longer exists. This check is made by an edge predicate,
denoted by the parenthetical condition, prior to executing
Some step, which checks the process state to determine if the
fix is required. Note that the dotted line notation is not
Little-JIL syntax, but is intended just to note that an
arbitrary amount of work may occur between when the
temporary fix takes place and the fix is completed.

Fig. 12 shows the structure of the Deferred Fixing pattern
in BPMN. The Exception Flow includes a temporary fixing
activity that includes the creation of a problem report. It then
flows back into the Normal Flow, which may include any
number of activities (indicated informally using a dotted
line). A Gateway is then used to check whether a problem
report exists in which case a full fixing is carried out.

Participants. There are three participants in the Deferred
Fixing pattern: the detector of the anomaly, the logger/
patcher, and the fixer. The anomaly detector is the portion
of the process that recognizes that a problem has arisen and
notifies the process by throwing an exception. The logger/
patcher is responsible for recording the anomaly and
possibly doing a temporary fix. In the Deferred Fixing
pattern, the logger/patcher is the exception handler. The
fixer is the later step that examines the log and completes
the handling of the nonnormative situation. Notice that the
fixer does not use an exception handling mechanism, yet is
a key participant in resolving the anomaly.

Sample code and usage. Fig. 10 includes an example of
the Deferred Fixing pattern. Deferred Fixing handles
exceptions caused by potential test case failures during
program testing (represented in the Sub-Process Test the
Program). Here, every failure is recorded in a test log before
the control flow for this instance of testing terminates.
Failures, if recorded, are fixed only after all instances of
testing have been completed.

Fig. 13 shows another example of the Deferred Fixing
pattern in use, this time in Little-JIL. Here, the traveler has
successfully reserved a flight, but the Website that is used to
allow the user to select a seat is unavailable. Reserve flight
throws the SeatSelectionWebsiteIsDown exception. This is
handled by making a note to select seats later and then
continuing with reserving the hotel and car. At some later
point in the process, a test is made to see if the seats have
been selected. If not, the Select plane seats step is executed.

LERNER ET AL.: EXCEPTION HANDLING PATTERNS FOR PROCESS MODELING 9

Fig. 11. The structure of the Deferred Fixing pattern in Little-JIL.

Fig. 12. The structure of the Deferred Fixing pattern in BPMN.

2.2.3 Pattern Name: Retry

Intent. When a problem is detected immediately after the
execution of the activity causing the problem, an action is
taken to address the problem and then the activity that
caused the problem is tried again.

Applicability. This pattern is applicable when an activity
fails but a change to the state or insertion of a short pause
seems likely to allow the activity to succeed if it is tried
again. This is a common approach when input to an activity
is incorrect, such as a credit card number, or transient
hardware failures occur, as when using the Internet.

Structure. Fig. 14 shows the structure of the Retry
pattern in Little-JIL. Here, an exception is thrown during
the Do the work step. It is handled by the Retry step, which
first performs a step to Update Context followed by
recursively carrying out the Task step. The Update Context
step may also be responsible for determining whether to
continue with retrying the Task or whether to give up and
propagate the exception to be handled elsewhere. This is
important to avoid retrying the same task indefinitely. On
completion of the Retry step, the Task that it is an exception
handler for is complete. Fig. 15 shows the structure in
BPMN. Here, the Exception Flow contains Update Context,
and then, loops back to Task. An additional Exception Flow
is defined for giving up retry and propagating the exception
to be handled elsewhere.

Participants. This pattern contains the same two parti-
cipants as in Immediate Fixing. The anomaly detector is
similar, but the fixer has a more refined structure consisting
of a step to update the context prior to a retriable activity,
which is the activity that is recursively or iteratively
invoked after the context update.

Sample code and usage. In Fig. 16, we show the trip
planning process using the Retry pattern. Here, if it is not
possible to get a flight that fits the original plan, the Reserve

flight step throws the FlightNotAvailable exception. This is
handled by the Revise plan step, which revises the dates and
then uses the Make the reservations step1 recursively. When
the exception handler completes, the initial Make the
reservations step is also complete due to the complete
semantics associated with the exception handler.

Variations. In some cases, it may be reasonable for the
fixer to be missing or play a minimal role. For example, if
the exception being handled is that a Website is not
responding, the fixer might simply insert a delay before
retrying the Website, or it might count the number of retries
and abort if repeated attempts fail.

2.2.4 Pattern Name: Exception-Driven Rework

Intent. An arbitrary amount of time can pass between the
occurrence of a problem and its detection. During that
time, other activities whose executions depend on the
activity in which the problem occurred can be executed.
Once the problem is detected, the fixing of the problem
includes the reexecution of the activity that introduced the
problem originally.

Applicability. Exception-driven Rework is a general-
ization of Retry. It is applicable in almost the same
situations as Retry, except that it relaxes the requirement
that no time elapses between the occurrence and the
detection of the problem. In the Retry pattern, a problem
with the original work is detected immediately after the
occurrence of a problem, and this detection, in turn, causes
the repeated work to also be done immediately. Exception-
driven Rework allows for the detection of the problem and

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. XX, XXXXXXX 2010

Fig. 14. The structure of the Retry pattern in Little-JIL.

Fig. 15. The structure of the Retry pattern in BPMN.

Fig. 16. Using the Retry pattern to replan a trip.

1. The Make the reservations step at the bottom of the diagram is a
reference step. Its execution results in a recursive execution of the Make the
reservations step defined earlier.

Fig. 13. Using the Deferred Fixing pattern to complete seat selection at a
later time.

the repeated work performed to fix the problem to take
place at any time, perhaps even after a significant amount of
time has elapsed since the problem was created.

Structure. Exception-driven Rework is itself a case of the
more general notion of Rework, where the rework need not
be triggered by an exception, but simply entails the
reexecution of a step executed at some point in the past.
Cass et al. [33] provide a much more complete definition
and description of rework.

Participants. The participants in this pattern are the
anomaly detector and the fixer. As in the case of the Retry
pattern, the fixer can be further decomposed into a structure
that contains a step to update the context prior to executing
a retriable activity.

Sample code and usage. An example of Exception-
driven Rework can be found in the medical process domain.
Fig. 17 shows a snippet from a chemotherapy preparation
process. At some point earlier in the process, a doctor has
entered medication dosages as part of her/his orders for
treatment of a patient. As a safety check, a nurse later uses
patient height and weight data to manually recalculate the
doses of these same medications and then attempts to
confirm that newly calculated doses match the doses
ordered by the doctor. If the doses do not match, the nurse
needs to notify the doctor of this problem, then the doctor
needs to reenter the correct doses by reworking a previously
executed medication entering activity, which now is done in
a new context, namely, one in which the previous faulty
performance is now a part of the history of the execution of
the process. After the doctor has entered the new doses, the
nurse needs to retry (also in a new context) the activity he/
she failed to complete, namely, confirming that the
manually calculated doses match the ones just entered by
the doctor.

Variations. Rework is often accompanied by a ripple
effect. Other already executed activities in a process may
depend on the decisions made in or the outputs produced
by the problematic activity. In that case, simply reworking
the problematic activity is not sufficient. To fully fix the
problem, the already executed activities that are dependent
on the problematic one should also be revisited.

2.3 Canceling Behavior

A final category of exception handling patterns is one in
which an action being contemplated must not be allowed
for some reason.

2.3.1 Pattern Name: Reject

Intent. It sometimes becomes apparent that an action being
contemplated should not be allowed. The agent contem-
plating the action must be notified and allowed to make
adjustments or changes and try again, if so desired.

Applicability. This pattern creates an entry barrier to a
part of a process.

Structure. There are different ways to represent the
structure of the Reject pattern using UML. One simple way
is given in Fig. 18 using a Decision Node represented in the
figure by a diamond and Guards on its output edges. The
guards check the result of the Validate Process Inputs action,
and accordingly decide to continue to the next step if the
inputs are valid or to notify the agent of their rejection if
they are not. There is a single final state which both the
nominal and exceptional flows reach.

Fig. 19 shows the Reject pattern in BPMN notation. Here,
the Exception Flow simply contains an End Event that
throws a Message of notification. In contrast to the UML
structure, here, we have two final states, one for the
normative flow and another for the exceptional flow.

Participants. The Reject pattern consists of a validator
and a rejecter. The validator determines if the input should
be accepted or not. The rejecter is an activity that causes
the portion of the process that handles the rejected input to
be canceled.

Sample code and usage. Many processes incorporate
checks of various conditions that must be satisfied in order
for a portion or the entirety of the process is to continue.
Thus, in Fig. 20, we show a Little-JIL process that cancels a
trip if there is no flight available for the trip. This happens
because the exception handling semantics in this case is to
rethrow the exception, denoted by the upward pointing

LERNER ET AL.: EXCEPTION HANDLING PATTERNS FOR PROCESS MODELING 11

Fig. 17. Using Exception-driven Rework in the medical domain.

Fig. 18. The structure of the Reject pattern in UML.

Fig. 19. The structure of the Reject pattern in BPMN.

arrow on the exception handler. Note that this process
would seem to have the same goal as the process depicted
in Fig. 16, but the processes differ in the actions taken when
there is no flight available. In the earlier example, we
revised plans and tried again. In this example, we simply
give up. Still another approach to dealing with this situation
would be to allow the user to make the choice, leading to a
process that utilizes both patterns. In this case, rejecting the
input results in the entire process being aborted.

Fig. 21 provides one more example of the use of this
pattern, this time in a software development process written
in UML. This example shows a process, Make a good fix, for
fixing a module. The process begins by coding the
improved module. Then, there is a check to see if the
module has really been improved (for example, by testing,
formal and/or informal analysis). If we decide that the
purported fix is not really an improvement, we reject the fix
instead of accepting it in the next step. Here, an exception
handler higher in the process (not shown) would catch the
propagated exception and allow software development to
continue, but without the fix that was rejected.

Variations. The Reject pattern can be used either to abort
the entire process or to abort only part of the process. To
abort part of the process, an exception handler higher in the
call hierarchy will need to handle the exception to allow the
process to continue.

2.3.2 Pattern Name: Compensate
Intent. When canceling an activity, it is often necessary to
undo work that has already been completed. This pattern

addresses the need to determine what work must be
undone and to then execute the compensating action(s)
needed in order to undo it.

Applicability. This pattern is particularly useful in
contexts in which it is not possible to know at the outset that
a task will succeed, or the results produced by the task will
prove ultimately to be acceptable. Because of this, the process
must incorporate mechanisms for undoing the part(s) of the
task that did complete and/or replacing the outputs that
proved to be unacceptable. In some cases, the state of the
process after compensation may appear to be the same as if
the failedactivities never occurred.Often, however, therewill
be a record that the activity occurred but the compensating
activity nullifies the effect of the original activity, as when a
credit card credit compensates for a credit card charge.

Structure. Fig. 22 shows the structure of the Compensate
pattern in BPMN, using BPMN’s Compensation construct.
Compensation rolls back some of the effects of a Transac-
tion. A Transaction is based on a formal business relation-
ship and unanimous agreement among two or more
participants. It is modeled as a Sub-Process with a
double-line boundary. A Cancellation Event attached to
this boundary will interrupt the Transaction and make the
process continue along the Exception Flow specified.
However, before starting the Exception Flow, any com-
pleted activities within the Transaction that have Compen-
sation activities are undone by explicitly defined rollback
activities. This is modeled by attaching a Compensation
Event to the boundary of that activity, and connecting it to a
special kind of activity, a Compensation activity (repre-
sented using a rewind symbol). In the figure, two normative
tasks are defined in a parallel flow that allows their
execution in any order (which corresponds to the parallel
construct in Little-JIL). A Compensation activity is defined
only for Task 1. When a cancellation of the Transaction
occurs after Task 1 has completed, the Compensation
activity is executed, and then, the Exception Flow defined
for the Transaction is activated. The BPMN diagram nicely
demonstrates how the Compensate pattern is typically used
within the larger context of a parent process.

Neither Little-JIL nor UML have a compensation con-
struct. This makes the Compensation pattern more difficult
to express in the general case. This is because it now becomes
necessary to define tests in the process to determine which
steps are complete in order to know which compensation
actions are required when an exception occurs. Fig. 23 shows

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. XX, XXXXXXX 2010

Fig. 22. The structure of the Compensate pattern in BPMN.

Fig. 21. Using the Reject pattern to reject a code fix that does not work.

Fig. 20. Using the Reject pattern to cancel a trip.

how this would be expressed in Little-JIL. Step 1 and Step 2
are done in parallel. If Step 2 fails but Step 1 completes, an
exception handler is used to compensate for the effects of
Step 1. Notice that the process needs to check explicitly if
Step 1 is complete in its exception handler.

Participants.The participants in this pattern are theActor,
the Canceller, and the Compensator. The Actor performs
some task that theCanceller later wants to undo. The undo is
accomplished by the Compensator, which understands the
work that was completed and how to undo it.

Sample code and usage. Fig. 24 shows another variation
of the Little-JIL process of planning a trip. In this example,
the reservations can be obtained in any order. If we fail to
get a flight, we cancel the trip. This will require cancelling
hotel and car reservations if those activities have already
completed. The crucial difference between this example and
the one in Fig. 20 is that, in the earlier example, the user got
the plane reservation first and thus had nothing to cancel if
there was no flight available. In this example, the user can
do the three reservations in any order, and potentially
concurrently, so we need to determine what was accom-
plished if we need to cancel the trip.

Fig. 25 shows a BPMN example process of customer
order management. It is modeled using a Transaction
Manage Customer Order that includes activities of charging
the customer and sending a receipt of payment, and picking
the ordered product from the warehouse and shipping it to
the customer. Three of these activities are associated with
Compensation Activities. When a cancellation (for exam-
ple, an order cancellation) occurs, any of the three activities
that has completed is compensated as specified in reverse
order of the normative flow. After the Transaction is fully
rolled back, the control flow is redirected according to the
Exception Flow defined on the parent level.

Variations. Compensation can be combined with other
patterns. In particular, any time that an activity fails with an
exception, it may be necessary to undo some work that has
been completed. Thus, compensation could form part of the
exception handling used in any of the preceding patterns.

Another variation is that it is not always necessary to
include in the process the tests to determine what work
needs to be compensated, even in the absence of a
compensation construct like BPMN has. This is the case if
the location of the exception handler is sufficient to
determine what work is complete, as would be the case if
the compensation was in the context of sequential tasks
rather than concurrent tasks.

3 EVALUATION OF EXCEPTION HANDLING

PATTERNS

To evaluate the catalogue of exception handling patterns, we
examined several existing definitions of real-world pro-
cesses. The main question we were interested in was how
well the exceptional situations encountered in the real world
can be specified by the exception handling patterns from the
catalogue. Associated goals were to determine the relative
frequencies of the occurrence of the various patterns in the
definitions of the real-world processes, and gaining some
intuition about the amount of effort entailed in representing
the handling of exceptions in real-world processes. Here, we
present results obtained from studying Little-JIL definitions
of two processes from different domains—the medical and
the digital government domains. The complete definitions of
these processes are available at http://laser.cs.umass.edu/
processes/exceptions/.

To give a sense of the size of the processes and the relative
amount of process content that is devoted to exception
handling, we include statistics measuring the number of
steps in each process, as well as the number of steps involved
in exception handling.While these provide some insight into
process size, they might not correlate well with the amount
of actual effort required either to define the exception
handling in the processes or to perform the exception
handling at runtime. Our experience indicates that process
performers often carry out the tasks involved in normative
process flow in a fairly standard manner, but that sig-
nificantly more elicitation effort is required in order to

LERNER ET AL.: EXCEPTION HANDLING PATTERNS FOR PROCESS MODELING 13

Fig. 25. Using the Compensate pattern to cancel an order.

Fig. 24. Using the Compensate pattern to cancel a trip.

Fig. 23. The structure of the Compensate pattern in Little-JIL.

capture what people really do to handle exceptions and to
identify the commonality and the variations among different
approaches to handling each exception. While the elicitation
activity might be time-consuming, the actual definition of
the exception handling process may not require very many
steps, particularly if the exception handling involves reuse of
steps already defined. Thus, in general, our experience
suggests that the number of steps in the definition of the
exceptional flow often underestimates the effort spent in
eliciting and specifying the exceptional flow.

The chemotherapy process definition. The Little-JIL
definition of a chemotherapy process was the largest
definition of a real-world process that we had access to.
At the time this paper was written, the chemotherapy
process definition consisted of 467 Little-JIL steps.2 The
definition captures the process of preparation for and
administration of outpatient breast cancer chemotherapy. In
a period of approximately a year, computer scientists
elicited the process from medical professionals working at
the D’Amour Center for Cancer Care in Springfield,
Massachusetts, and created a Little-JIL definition of that
process. Since many medical errors that lead to patient
safety hazards occur in atypical, exceptional situations, a
great deal of effort was spent in identifying such excep-
tional situations and specifying them precisely in Little-JIL.
In particular, 207 of all 467 steps (or about 44 percent) were
used to represent these exceptional situations and their
handling in this process definition.

The resulting process definition captured 59 exceptional
situations specifying precisely the types of the exceptions,
where in the process they occurred, the actions undertaken
to remedy the exceptions and the resumption of normal
flow after handling the exception. We studied these
59 exceptional situations and tried to determine if and
how they related to the patterns in the catalogue. Fig. 26
presents the results of this investigation. Most of the
exceptional situations in the chemotherapy process that
were captured by the Little-JIL definition seemed to be
instances of the patterns in the catalogue. The two
exceptional situations that did not easily match any pattern
in the catalogue actually seemed to combine elements of
both the inserting and the canceling behaviors.

The ODR process definition. The second existing
definition that we looked at was a Little-JIL definition of

an online dispute resolution (ODR) process that was used to
drive a Web-based application for dispute resolution. The
definition captures a dispute resolution process used by the
National Mediation Board (NMB) to resolve conflicts
between two different parties. It was elicited from a
mediator working for the NMB. At the time this paper
was written, the ODR process definition consisted of
209 Little-JIL steps, 108 of which (or about 52 percent) were
part of the exceptional flow.

The ODR Little-JIL process definition specified 19 excep-
tional situations. Fig. 26 shows how many of them are
instances of each of the different exception handling
patterns in the catalogue.

Observations. Almost all of the exception handling
situations specified in the process definitions we studied
(76 out of the 78, or 97.5 percent) were instances of the
patterns from the catalogue. This was encouraging, suggest-
ing that exceptions are indeed prevalent in real processes,
and underscoring the potential value for enunciating a set
of patterns that could be useful in guiding the efforts of
people who are attempting to define real-world processes.
We hope that defining these process patterns might cause
process definers to be more aware of the presence of
exceptions, and more comfortable in incorporating them
into process definitions.

The variation in levels of usage of the different patterns
was also interesting. We note that the Immediate Fixing
pattern occurred most frequently in these examples with
36 uses. This seems to be reasonable as agents do seem to be
most inclined to try to remedy exceptional situations
immediately in the real world. We are less certain of the
reasons for the relative scarcity of instances of some of the
other patterns. It indeed seems possible that Unordered
Alternatives are less prevalent because people innately have
preconceived preferences among alternatives, but this is not
immediately obvious to us. It is far less obvious why there
are so few instances of the Compensation pattern, as this
seems to be a relatively common reaction to exceptional
circumstances. Here, we are concerned that the relative
scarcity of this pattern in our examples might be due to
possible bias in the examples themselves. We note that
these examples were written in Little-JIL, a notation in
which compensation is relatively difficult to specify,
suggesting that the facilities of a language might have a
noticeable effect upon the process features that are
incorporated into a process definition.

Another interesting observation concerns the nesting of
exception handling patterns within each other. We said that
an instanceofpatternA isnestedwithinan instanceofpattern
B if the instance of A occurs entirely “inside” the exception
handler of the instance of B. Ten of the pattern instances
(seven from the chemotherapy and three from the ODR case
studies) were nested within other patterns. All of the nested
patterns, except one, were instances of the Ordered Alter-
natives pattern. This seems to suggest that when people are
dealing with an exceptional situation, they often have a
prioritized list of tasks to try in order to fix the problem.

Threats to validity. The results presented above may
have been affected by unintentional personal bias in two
ways. First, the decision about whether a certain behavior is
exceptional or not, and consequently, whether this behavior
was considered in the evaluation of the patterns, may have

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. XX, XXXXXXX 2010

2. This number counts all of the steps declared in the handler as well as
all of the references in the handler to steps declared elsewhere.

Fig. 26. The number of occurrences of each pattern in the chemotherapy
and ODR process definitions.

been biased. The chemotherapy process definition was
created by one of the authors of the paper and deciding
which behaviors were part of the normative flow and which
behaviors were part of the exceptional flow may have been
influenced by the author’s awareness of how the exception
handling patterns work. To attempt to reduce possible bias
in categorization of the exceptions in the chemotherapy
process, we also consulted the medical professionals from
whom the process was elicited. We asked which behaviors
they considered normative and which behaviors they
considered exceptional. Their responses did confirm our
selection and categorization of the exceptions in that process.

The second process definition (the ODR process defini-
tion) was created by a process definition developer who
was unaware of the exception handling patterns when
creating the definition. Thus, the frequency and distribution
of instances of the process patterns should not have been
influenced by the work on this paper. This may have
affected the distribution of types of exception patterns that
were observed, however.

The second source of bias is associated with classifying
the exceptional behaviors from the process definitions as
instances of the patterns from the catalogue. The precise
structure of the patterns we presented in Section 2 was an
extremely useful guide in making these classification
decisions, but, on a small number of occasions, personal
judgment was involved in deciding which pattern a
particular exceptional situation used.

Evaluation of processes in other notations. We made an
attempt to examine process definitions in UML and BPMN.
The process definitions that we had access to, however,
were focused primarily on normative flow and lacked
thorough specification of exceptional flow. For example, we
looked at the model-based Simulation, Verification, &
Testing (SV&T) process repository created as a part of the
MODELPLEX project [3]. The processes were formalized in
SPEM2.0 [34] using the EPF Tool [35]. The SV&T process
repository contained 47 process diagrams, some of which
were at a higher level of abstraction and others were lower
level decompositions of the higher level diagrams. There
were only a few occasions on which some process behavior
modeled with decision nodes could be thought of as
exceptional behavior. Thus, there seemed to be six instances
of the Rework, one instance of Reject, and one instance of
Immediate Fixing in the processes in this repository. The
process definitions were, however, specified at a very high
level (to make them general) and omitted detail that could
allow us to claim with certainty that specified behavior is an
instance of a given exception handling pattern. We were
unable to gain access to any sizable BPMN process
repository for this work. Thus, our evaluation focused on
two Little-JIL process definitions that specified a significant
amount of exceptional behaviors, and at the same time were
detailed and precise enough to allow us to categorize these
exceptional behaviors as instances of our patterns.

4 EFFECTIVENESS OF FORMALISMS IN EXPRESSING

EXCEPTION HANDLING PATTERNS

Earlier in this paper, we explained the reasons for using three
notations, UML 2.0, BPMN, and Little-JIL, as the vehicles for
introducing our patterns. Each offered features that seemed
potentially quite useful as vehicles for supporting the

definition and illustration of our patterns. Moreover, we
note that it has been claimed that “of the standards, UMLAD
and BPMN are currently the most expressive, the easiest for
integration with the interchange and execution level, and
possibly the most influential in the near future” [36, p. 11].
The popularity of these notations strongly motivated their
use. In addition, we have had considerable experience in
designing and using features of Little-JIL that seemed
particularly appropriate for dealing with exceptions. Our
preliminary expectation, however, was that none of the three
seemed to be clearly superior to the other two in its ability to
support the specification of all of the patterns.

Our experience has now borne out our initial expecta-
tion. All three notations, UML Activity diagrams, BPMN,
and Little-JIL, provide the basic mechanisms needed to
support effective exception handling. Specifically, all
languages offer the ability to throw exceptions, to propagate
exceptions to a handler, to catch the exception, and to
resume the process at an appropriate point after exception
handling. Despite this, we found significant differences in
the ways in which the exception handling patterns are
expressed in these notations. These differences arise from
the fact that there are different constructs available in each
notation and that they interact with the exception handling
mechanisms in different ways.

For example, Little-JIL seems to offer advantages as a
vehicle for defining instances of Ordered and Unordered
Alternatives patterns. This is attributable to the presence of
the Try and Choice step kinds that are present in Little-JIL.
Combining these step kinds with exception handlers that
use “continue” semantics provides direct support for the
definition of these patterns. This also serves the useful
purpose of making it clear that the handling of an exception
is being defined in this way. It is harder to identify the
occurrence of either of these types of exception handling
patterns in UML and BPMN. In these notations, the
Ordered Alternative pattern is represented as cascading
exception handlers. This makes it less obvious at a glance
that these represent alternative ways to perform a single
task. The Unordered Alternatives pattern requires the use of
a looping construct to allow the untried alternatives to be
attempted. This makes it less obvious that an Unordered
Alternatives pattern is intended, since this type of use of a
loop is hard to distinguish from any of a number of other
types of use of the looping construct.

The Immediate Fixing and Deferred Fixing patterns seem
to be captured equally well in all notations. In all three
notations, Immediate Fixing is easily represented by an
exception handler that remedies the situation and quickly
returns to the normative control flow. In Little-JIL and
UML, this is accomplished by attaching the exception
handler at the right place in the call hierarchy such that
control will continue appropriately on the handler’s
completion. In BPMN, the control flow coming out of the
exception handler merges back into the normative flow
with an explicit edge. In all notations, the Deferred Fixing
pattern is less clear. This is because the pattern requires
both some immediate action, which is easily represented,
and also some data flow to allow the exception handling to
be completed at some other point in the process, which may
be arbitrarily distant from where the exception occurred.

LERNER ET AL.: EXCEPTION HANDLING PATTERNS FOR PROCESS MODELING 15

Graphical notations most naturally work best when one
needs to express relationships between parts of a process
that are close to each other. It should not be surprising then
that the Deferred Fixing pattern can easily be obscured by
the distance between the logger and the fixer.

The Reject pattern again seems to be easily expressed in
all notations as it involves simply abandoning a process or a
portion of a process when an exception occurs. The
Compensate pattern is more tricky to define as deciding
which actions need to be compensated for requires knowing
which actions have completed. Here, BPMN’s Compensa-
tion mechanism makes it very simple to attach compensat-
ing operations to individual actions. The runtime system can
use its knowledge of the state of the process to determine
which actions are complete and therefore require compen-
sation. In contrast, Little-JIL and UML do not have a
construct for compensation. As a result, the process modeler
must place tests in the exception handler itself to determine
which actions to compensate. Also, the compensating
actions are defined separately from the actions they are
compensating for, leading to a tighter coupling between the
actions and the exception handler than we see in BPMN.

In conclusion, we see that the basic mechanisms of
exception handling are expressed adequately in all lan-
guages. However, the inclusion of additional language
constructs can lead to clearer depiction of some important
exception handling patterns. Thus, the Choice and Try
control flow operators of Little-JIL as well as the Compen-
sation construct of BPMN facilitate the expression of certain
exception handling patterns.

5 RELATED WORK

Exceptional situations arise frequently during the execution
of processes. In recognition of this, many process and
workflow languages include constructs to allow for the
definition of exception handlers (for example, Little-JIL [32],
WIDE [37], OPERA [38], and GAT [39]). While researchers
continue to study how best to provide exception handling
mechanisms within process languages, exception handling
has become more mainstream with its inclusion in
languages like WS-BPEL [40], [41] and products like IBM’s
WebSphere [42].

Exception handling is a common approach to fault
tolerance in software systems. Avi!zienis et al. [43] present
a taxonomy of error handling techniques: rollback, roll-
forward, and compensation. This categorization of exception
handling strategies has been applied to process modeling.
Golani and Gal [44] describe rollback and stepping forward
in process modeling. In their model, an exception handler is
expected to perform first its set of rollback tasks and then its
set of stepping forward tasks, although they do note that
either or both sets of tasks may be empty. Our work focuses
more on the composition of the exception handling tasks
with normal process tasks to identify higher level patterns.
Within the exception handlers themselves, we expect there
to be tasks involved in rollback and stepping forward.

Hagen and Alonso [38] suggest that workflow tasks be
characterized as being retriable, compensatable, both, or
neither. In their model, exception handlers may undo the
actions of compensatable tasks and attempt retriable tasks,

perhaps in a different fashion. Our Ordered Alternatives,
Unordered Alternatives, and Retry patterns are three
patterns of exception handling that capture the notion of
retrying tasks. In contrast, the Immediate Fixing, Deferred
Fixing, and Compensate patterns primarily compensate for
failed tasks. We find the Hagen andAlonso distinction to not
be entirely clear, however, as retrying a task may also
require compensating for the alternatives already attempted,
while fixing a problem caused by a task may also involve
performing the original task in an alternative fashion that is
only appropriate in the exception handling context.

Li et al. [45] define a rich set of continuation semantics
for where control should flow following an exception.
Many of these fit very nicely into the exception handling
patterns we have defined here. In particular, their Replace
continuation supports the Alternatives patterns and Retry is
analogous to our Retry pattern. Zeng et al. [46] support a
similar set of exception handling actions. In particular, their
Retry action is analogous to our Retry pattern, their
Alternative and Replace actions are similar to our Alter-
natives patterns, and their Compensate action is similar to
our Compensate pattern. Schäfer et al. [47] define an
extended transaction model that supports internal excep-
tion handling to avoid costly transaction aborts when
possible. They allow for the substitution of alternative
Web services when one fails, which is an example of our
Alternatives pattern. They also allow for update messages
to be sent to an active transaction to correct its behavior,
which is an interesting example of our Immediate Fixing
pattern. All of these efforts differ significantly from our
approach in that they focus on specific exception handling
primitives. While they also provide motivation and gui-
dance on the use of these primitives, they stop short of
attempting to codify the situations that are to be dealt with
and the specifics of how to do so. Our approach is aimed at
addressing the key higher level issues of identifying and
codifying the patterns commonly used in exception hand-
ling that transcend specific notations. The presence of these
primitives reinforces the idea that the patterns presented in
this paper are genuine patterns that represent common
approaches to exception handling.

In more closely related work, Russell et al. [28] discuss
exception handling patterns in workflow. They approach
exception handling patterns by identifying four dimensions
associated with exception handling mechanisms: the nature
of the exception, if and how the work item that encounters
the exception continues, whether other work items are
canceled as a result of the exception, and whether there is
any rollback or compensation performed. Based on this
analysis, they suggest that these four dimensions be used to
derive a universe of exception handling patterns. They
essentially suggest that each of the different combinations of
the possible choices from each of these four dimensions be
considered to be an exception handling pattern, without
regard to whether these combinations are commonly used in
practice and without providing a description of the work-
flow problems that the pattern might be suitable for
addressing. Thus, it is still left to the workflow designer to
understand the mechanisms at their most basic level.
Identifying these combinations may be useful as a bench-
mark to determine the exception handling capabilities of a
process language. On the other hand, these combinations do
little to aid process designers in identifying and reusing

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. XX, XXXXXXX 2010

existing high-level solutions since no general higher level
purpose for a particular combination is provided to guide
the designer in choosing a pattern to use. The combinations
that Russell et al. identify also lack names that might suggest
their usefulness. Instead, they name the patterns with
acronyms derived from the choices made out of each of the
four dimensions. For example, they identify 30 patterns
associated with expired deadlines alone, two of which are
called OCO-CWC-NIL and ORO-CWC-NIL. Our approach
differs from the approach of Russell et al. in that it is driven
by recognition of patterns that we have identified through
ourwork in defining processes inmultiple domains.We thus
approach the identification of patterns in a top-down
manner, analyzing uses of exception handling to generalize
and extract patterns that we believe to be useful beyond the
specific processes in which we have found them.

6 CONCLUSIONS

We have found the exception handling patterns described
here to be useful in raising the abstraction level of process
models. They provide a way of approaching exception
handling by providing a framework of questions we can
ask. Can we fix the problem immediately? Is there another
alternative the process should offer? Should we reject this
input entirely?

Just as there are many uses of classes that do not play
roles in object-oriented design patterns, we expect that there
are needs for exception handling in processes that cannot be
met by any of the patterns we define here. Thus, in this
work, we do not consider all legal ways of combining
exception handling mechanisms. Rather, we have focused
on combinations that we have encountered repeatedly in
our work in defining processes in such diverse domains as
software engineering, business, negotiation, and healthcare.
While we believe that the diversity of these domains
confirms our claim that the patterns are general purpose
in nature, we certainly do not believe that this catalog is
complete and we expect that it will grow over time.

While some patterns are easier to express in some
notations than others, we also believe that the patterns are
notation-independent. On the other hand, the presence of
particular constructs within a notation affects the ways in
which one models processes. In fact, our experience with
examining real processes indicates that many processes do
not include exception handling in their descriptions. This
may be partly due to the noncritical nature of the processes,
but it may also be at least partly due to the absence of
constructs that are conducive to representing exception
handling well in those notations. We hope that this study on
exception handling patterns will encourage process mode-
lers to include exception handling in their processes more
often and help process language designers consider con-
structs to facilitate exception handling more carefully.

APPENDIX A

THREE PROCESS MODELING NOTATIONS

In this section, we present brief introductions to UML 2.0
Activity DIagrams, BPMN, and Little-JIL, the notations we
used throughout the paper, as assistance to readers who are
unfamiliar with any of these notations. As noted earlier, our

experience suggests that each notation has strengths and
weaknesses in its ability to present the patterns clearly. Thus,
we have concluded that the use ofmultiple processmodeling
notations seems most effective for this presentation.

It is important to note that we do not attempt to describe
all of the features of these languages. Doing so would
require more space than is available to us, and would repeat
needlessly details that are readily available from existing
literature. Instead, in this section, we simply summarize
informally those features of each language that we have
found to be effective in supporting the clear and precise
definition of the exception management patterns that are
the subject of this paper.

A.1 UML 2.0 Activity Diagrams

The Unified Modeling Language (UML) [30] encompasses a
collection of graphical representations that are used widely
to represent various aspects of software systems. For
example, Class Diagrams are useful in representing the
static structure of a software system, while Sequence
Diagrams are useful in capturing details of the runtime
interaction between objects. Of particular interest to us in
this work is the Activity Diagram, which is well suited to
representing processes. Additions to the notation with
version 2.0 are particularly useful in defining various
aspects of exception handling.

A.1.1 Representing Processes with Activity Diagrams

A UML Activity is the basic building block used in
representing processes or subprocesses. An activity is
drawn as a large rounded rectangle as shown by the Hotel
Reservation Process activity in Fig. 4. Smaller rectangles that
cross the boundary of the activity rectangle are used to
represent the inputs and outputs of the activity, while the
actions that comprise the activity itself are represented by
means of control and object flow diagrams located within
the activity rectangle. Activities can have preconditions and
postconditions, which describe the context in which the
activity can be used and the effect of the activity.

An activity is composed of individual elements called
actions, which are single, atomic steps that cannot be
decomposed further. A rounded rectangle containing only
a name is an opaque action as shown by the updateAuthor-
izedAlternatives action in Fig. 6. An OpaqueAction is an
action about which there is no further description. As such it
is particularly appropriate for use in representing activities
with implementation-specific semantics or activities that
represent human actions like Identify Classes in an object-
oriented design process. Actions labeled with CallBehavior-
Action invoke an activity that is defined elsewherewithin the
process, as in Alternative1 in Fig. 6. Actions can be grouped
together into a StructuredNode, represented by a rounded
rectangle drawnwith dashed lines, as shown in Fig. 4, which
allows them to be protected by an Exception Handler. The
body of the exception handler is itself defined by actions.

Fig. 27 shows the control nodes defined in UML 2.0. A
Decision Node is used to define conditional branches. It
indicates that a choice must be made among the indicated
set of control flow edges emanating from the decision node.
Guards written in Object Constraint Language (OCL) [48]
may be attached to these edges for use in determining how

LERNER ET AL.: EXCEPTION HANDLING PATTERNS FOR PROCESS MODELING 17

this choice is to be made. A MergeNode is used to specify
that the completion of any of the multiple alternate actions
shown as inputs to the merge node is sufficient to cause the
initiation of execution of the action that follows the merge
node. In order to express concurrency as well as synchro-
nization, UML2.0 defines, respectively, ForkNode and
JoinNode. All nodes at the heads of edges having a fork
node at their tails can execute concurrently, thereby
specifying the initiation of parallel threads. A JoinNode
synchronizes parallel threads by specifying that the join
node’s execution does not complete until the completion of
the execution of all nodes at the tails of all edges for which
the join node is the head. In addition, there are initial and
final nodes that represent the actions of starting and ending
the execution of an activity.

To support greater expressiveness in specifying flow of
control alternatives, UML 2.0 also includes the Conditional
Node, as shown in Fig. 6, which specifies more details of
conditional behavior than the Decision Node described
earlier. A conditional node contains within it a test and a
body. The Test is expressed using the same components as
activities use (such as Actions, Control and Object Nodes,
and control and object flows), allowing for much richer
semantics than the guards attached to the edges of a
Decision Node. In addition, it is possible to attach to a
Conditional Node an exception handler that indicates how
to handle exceptions that arise from either the test or the
body of the Conditional Node.

A.1.2 Exception Handling Mechanisms
Prior to version 2.0 of UML, it was necessary to combine
the use of class and interaction or state diagrams to model
exceptions, but new semantics have been added to UML 2.0
activity diagrams in the form of the RaiseExceptionAction
and ExceptionHandler metaclasses to provide far stronger
support for the specification of exception handling. The
RaiseExceptionAction represents an action that causes an
exception to be raised. This creates a typed exception
object, terminates the immediately containing activity,
action, or StructuredNode, and initiates a search for an
ExceptionHandler that matches the type of the exception
object. The search starts within the activity where the
exception is raised. If there is a match, the handler catches
the exception. If there are multiple matches, a tool or
profile-specific implementer task must determine which
handler catches the exception. If the exception is not caught
by any handler in the activity, then the search repeats,
propagating to the next immediately enclosing structured
node or activity. If the exception is not caught there, and
the action that invoked the activity is synchronous, then the
exception propagates up to that action. The process of
exception propagation continues until the exception is

caught, or reaches the topmost level of the system.
Otherwise, if the action that invoked the activity is
asynchronous, the exception is lost.

An exception handler body has the same access to its
surrounding context as its protected node (that is, the
Structured Node, action, or activity to which it is attached).
The exception handler may be defined by means of actions,
edges, objects, and control nodes. When the handler body
completes execution, it is as if the protected node had
completed execution. The combination of the protected
node, RaiseExceptionAction, and ExceptionHandler corre-
sponds to the traditional try and catch blocks in program-
ming languages like Java.

A.2 BPMN

The Business Process Modeling Notation (BPMN) is a
graphical notation designed particularly for use in modeling
business processes. BPMN was developed in 2001 by the
Business Process Management Initiative (BPMI). In 2006, it
was adopted by the Object Management Group (OMG).
OMG nowmanages this notation, including its latest version
BPMN 1.2 [31]. Similarly to UML activity diagrams, BPMN
is a flowchart style process language. This form was chosen
in order to make BPMN easy to use by business domain
experts, while also being readily translatable into executable
form (specifically BPEL, the Business Process Execution
Language [40]). BPMN has been widely adopted by business
users and vendors of process modeling tools.

A.2.1 Representing Processes with BPMN

The core modeling elements in BPMN are Activities,
Events, and Gateways [49].

An Activity is represented as a rounded rectangle, as
shown in Fig. 28. There are two basic classes of activities:
Task (atomic activity) and Sub-Process (nonatomic activ-
ity). Sub-Processes may be represented as either collapsed
(hiding all lower level activities) or expanded (showing all
lower level activities). Collapsed Sub-Processes resemble
Tasks graphically but have an additional þ sign in the
bottom center of the shape. Expanded Sub-Processes are
enlarged to contain the lower level activities within the
boundaries of the Sub-Process. Fig. 28 also includes two
specialized Activities: Multi-Instance and Transaction. A
Multi-Instance is an Activity that has multiple instances and
is represented as using three vertical lines at the bottom
center. A Transaction is based on a formal business
relationship and unanimous agreement among two or more
participants. It is represented as a Sub-Process with a
double-line boundary.

An Event is represented as a circle, as shown in Fig. 29.
An event can start (Start Event) or end (End Event) a

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. XX, XXXXXXX 2010

Fig. 28. Activities in BPMN.
Fig. 27. UML control nodes.

process, or can occur during a process (Intermediate Event).
Events are caused by triggers, such as the arrival of a
message. Fig. 29 provides an overview of the triggers used in
the definition and illustration of the exception handling
patterns in this paper. They include Message (a message is
sent or received), Cancel (a transaction is canceled), Multiple
(a collection of possible triggers), Compensation (an “undo”
trigger), Error (an error occurs), Signal (a signal is broadcast
or received), and None (undefined trigger). All Start Events
catch triggers and all End Events throw triggers. Inter-
mediate Events can either throw or catch triggers. When
modeling Events in a specific process, they are usually
labeled to define instances of their triggers.

AGateway is represented as a diamond. AGateway splits
or merges the flow of a process. There are four classes of
Gateways, as shown in Fig. 30: Exclusive (XOR), Inclusive
(OR), Parallel (AND), and Complex (user-defined mechan-
ism). When using Exclusive or Inclusive Gateways for
specifying alternative flows of control, conditions must be
attached to all of the edges forwhich theGateway is at the tail.

The three core modeling elements are connected by
different types of edges, depicted as arrows. One type of
edge, called Sequence Flow and depicted by a solid arrow,
represents the order of activities in the process. Another
type of edge, called an Association and depicted by a
dotted arrow, shows how a Data Object that is the output
of one activity is passed to another activity to become its
input. Uses of these edges can be seen in Fig. 12.

A.2.2 Exception Handling Mechanisms
Exception handling in BPMN is commonly modeled using
the notion of Exception Flow. Here, an exception is
represented as an Intermediate (“catch”) Event with a
specified trigger attached to the boundary of an activity, as
shown in Fig. 8. When the Event is detected, the activity in

which it occurs is immediately interrupted and the
execution of the process continues along a new path, the
Exception Flow, originating from the Intermediate Event.
Exceptions may be triggered from within the activity to
which the Event is attached (for example, when the car runs
out of gas on the way to work), or from other locations
internal or external to the process (for example, when the
road on which you are driving is closed due to an accident).
The trigger used in Fig. 8 and for all of the patterns
presented in this paper is the Multiple trigger, based on its
broad coverage of various triggers.

An Exception Flow may be used to define a completely
new path, to terminate the process in which the exception
has occurred, to rejoin the nominal (or “happy”) path
(called theNormal Flow), as shown in Fig. 8, or to loop back
to a preceding activity.

A special class of exception handling mechanisms in
BPMN is Compensation, as shown in Fig. 22. Compensa-
tion rolls back some of the effects of a Transaction. A
Cancellation Event (for example, cancellation of a deliv-
ery), attached to the boundary of the Transaction, will
interrupt the Transaction and make the process continue
along the Exception Flow specified. However, before
starting the Exception Flow, any completed activities
within the Transaction that have Compensation activities
are undone by explicitly defined rollback activities (for
example, reimbursement of a deposit). This is modeled by
attaching a Compensation Event (represented using a
“rewind” symbol) to the boundary of that activity, and
connecting it via a directed Association to a special kind
of activity, a Compensation activity.

A.3 Little-JIL
Little-JIL [32] is a hierarchically scoped process language
with a graphical syntax, semantics that are precisely defined
by finite-state machines [50], and a runtime environment
that allows execution on a distributed platform [51]. The
basic unit of Little-JIL processes is the step, represented
graphically by an iconic black bar, as shown in Fig. 31. It is
useful and reasonable to think of a Little-JIL step as a
procedure. Thus, in particular, a step declares a scope and

LERNER ET AL.: EXCEPTION HANDLING PATTERNS FOR PROCESS MODELING 19

Fig. 30. Gateways in BPMN.

Fig. 29. Some events in BPMN.

Fig. 31. Little-JIL syntax.

includes an interface, represented by the circle at the top of
the figure. Among other things, the interface identifies
which exceptions a step might throw. Pre and postrequi-
sites, represented by the triangles to the left and right sides
of the step name, may be used to specify, respectively,
processes that are responsible for checking that the step can
be performed, and that the step was performed correctly.

A.3.1 Representing Processes with Little-JIL

Little-JIL substep decomposition is represented by having
substeps connected to the left side of the parent step by
edges. Each parent step specifies the execution order of its
substeps using one of the four sequencing icons, as shown
in Fig. 32, which appears in the step bar above the point
where the substep edges are attached. There are four
different sequencing icons: sequential, which indicates that
the substeps are executed in order from left to right;
parallel, which indicates that the substeps can be executed
in any (possibly interleaved) order; choice, which allows
any one of the substeps to be executed; and try, which
indicates that the substeps are executed left to right until
one succeeds. The choice and try sequencers both offer an
opportunity for the process modeler to represent that there
may be multiple ways of accomplishing an activity. The key
difference is that in the case of the choice sequencer, all of
the alternatives are presented to the process performer,
often a human, who can decide which of the choice
substeps to perform. In contrast, the try sequencer defines
an order in which the alternatives should be attempted.

A.3.2 Exception Handling Mechanisms

A parent step may offer exception handling facilities to its
descendant steps. These facilities are defined by exception
handlers connected to the parent by edges attached to the
right side of the parent’s step bar immediately below an X.
Each exception edge is annotated to identify the type of
exception that it handles. Exception handling in Little-JIL is
divided into three parts: signaling that an exceptional
condition has occurred, determining what steps are invoked
to handle the exceptional condition and then executing those
steps, and, finally, determining how the process should
proceed after the specified steps have been completed.

Copying programming languages such as Java, a Little-
JIL step signals an exceptional condition by throwing an
exception object. Unlike such languages, however, Little-JIL
steps are guarded by prerequisites and postrequisites,
which function much like assert statements and signal their
failure by throwing exceptions as well. Similar to precondi-
tions and postconditions in some traditional programming
languages, the bundling of a step together with its requisites
creates a scope that cleanly separates the task from its
checking, but ensures that the step can only be called in the

proper context, and specifies the guarantees that the step
can make to its callers. As in a traditional programming
language, once an exception has been thrown, determining
how the exception should be handled is done by searching
up the stack of invoking ancestor steps. Once a handler for
the exception has been located and executed, the process
specification is consulted to determine how execution
should proceed. Unlike most contemporary languages,
which generally only permit the handling scope to complete
successfully, or throw an exception, Little-JIL offers four
different exception continuations, as shown in Fig. 33:

. Completion, represented by a check mark icon on
the edge connecting the handler to its parent step,
corresponds to the usual semantics from traditional
programming languages. The step to which the
exception handler is attached is finished and execu-
tion continues as specified by its parent.

. Continuation, represented by a right arrow icon,
indicates that the step to which the exception
handler is attached should proceed with its execu-
tion as though the substep that threw the exception
had succeeded. It is important to note that this is not
the same as the traditional resumption semantics—if
several levels of the step’s ancestors had to be
searched before finding a matching handler, this
continuation will result in exiting from all of the
ancestor steps.

. Restart, represented by a backward pointing arrow,
restarts the step to which the handler is attached.

. Rethrow, represented by an up arrow, allows the
handler to propagate the triggering exception up to an
enclosing scope as in a usual programming language.

The continuation icon is placed on the edge connecting
the exception handler to its parent. In case the exception
handler has no steps associated with it, the continuation
icon is embedded in a circle at the end of the continuation
handler’s edge (as shown in Fig. 31).

ACKNOWLEDGMENTS

The authors wish to express their gratitude to numerous
individuals who have contributed examples and insights
supporting the points made in this paper. In particular, they
wish to thank Lori A. Clarke, George Avrunin, Beth
Henneman, Phil Henneman, Ethan Katsh, Dan Rainey,
Norm Sondheimer,Mohammed S. Raunak, Rachel Cobleigh,
Bin Chen, and Matt Marzilli for conversations, examples,
and constructive comments, all of which have contributed to
this work. This material is based upon work supported by
the US National Science Foundation under Award

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. XX, XXXXXXX 2010

Fig. 32. Little-JIL sequencing icons.

Fig. 33. Little-JIL exception continuationIcons.

Nos. CCR-0427071, CCR-0204321, and CCR-0205575. The

views and conclusions contained herein are those of the

authors and should not be interpreted as necessarily

representing the official policies or endorsements, either

expressed or implied, of the US National Science Founda-

tion, or the US Government. NICTA is funded by the

Australian Government as represented by the Department of

Broadband, Communications, and the Digital Economy and

the Australian Research Council through the ICT Centre of

Excellence program.

REFERENCES

[1] A.G. Cass and L.J. Osterweil, “Process Support to Help Novices
Design Software Faster Better,” Proc. 20th IEEE/ACM Int’l Conf.
Automated Software Eng., pp. 295-299, 2005.

[2] M. Li, B. Boehm, and L.J. Osterweil, Unifying the Software Process
Spectrum. Springer-Verlag, New York, 2006.

[3] Modelplex, IST European Project Contract IST-3408, http://
www.modelplex-ist.org, 2010.

[4] W.M.P. van der Aalst, “Business Process Management Demysti-
fied: A Tutorial on Models, Systems and Standards for Workflow
Management,” Lectures on Concurrency and Petri Nets, J. Desel,
W. Reisig, and G. Rozenberg, eds., pp. 1-65, Springer-Verlag,
2004.

[5] A.-W. Scheer, ARIS—Business Process Modeling, third ed. Springer-
Verlag, 2000.

[6] H.A. Reijers, S. Limam, and W.M.P. van der Aalst, “Product-
Based Workflow Design,” J. Management Information Systems, vol.
20, no. 1, pp. 229-262, 2003.

[7] D. Müller, M. Reichert, and J. Herbst, “Data-Driven Modeling and
Coordination of Large Process Structures,” Proc. Move to Mean-
ingful Internet Systems ’07: Int’l Conf. Cooperative Information
Systems, Int’l Conf. Distributed Objects and Applications, Conf.
Ontologies, DataBases, and Applications of Semantics, Int’l Conf. Grid
Computing, High Performance and Distributed Applications, and Int’l
Symp. Information Security, 2007.

[8] S.C. Christov, G.S. Avrunin, B. Chen, L.A. Clarke, L.J. Osterweil,
D. Brown, L. Cassells, and W. Mertens, “Rigorously Defining and
Analyzing Medical Processes: An Experience Report,” Proc.
Models in Software Eng.: Workshops and Symp. at MoDELS ’07, 2007.

[9] A. ten Teije, M. Marcos, M. Balser, J. van Croonenborg, C. Duelli,
F. van Harmelen, P. Lucas, S. Miksch, W. Reif, K. Rosenbrand, and
A. Seyfang, “Improving Medical Protocols by Formal Methods,”
Artificial Intelligence in Medicine, vol. 36, no. 3, pp. 193-209, 2006.

[10] M.S. Raunak, L.J. Osterweil, A. Wise, L.A. Clarke, and P.L.
Henneman, “Simulating Patient Flow through an Emergency
Department Using Process-Driven Discrete Event Simulation,”
Proc. Workshop Software Eng. in Health Care, 2009.

[11] M.S. Raunak, B. Chen, A. Elssamadisy, L.A. Clarke, and L.J.
Osterweil, “Definition and Analysis of Election Processes,” Proc.
Software Process Workshop (SPW ’06) and 2006 Process Simulation
Workshop, pp. 178-185, 2006.

[12] L.J. Osterweil, C.M. Schweik, N.K. Sondheimer, and C.W.
Thomas, “Analyzing Processes for E-Government Development:
The Emergence of Process Modeling Languages,” J. E-Govt., vol. 1,
no. 4, pp. 63-89, 2004.

[13] B.I. Simidchieva, M.S. Marzilli, L.A. Clarke, and L.J. Osterweil,
“Specifying and Verifying Requirements for Election Processes,”
Proc. 2008 Int’l Conf. Digital Govt. Research, pp. 63-72, 2008.

[14] L. Clarke, A. Gaitenby, D. Gyllstrom, E. Katsh, M. Marzilli, L.J.
Osterweil, N.K. Sondheimer, L. Wing, A. Wise, and D. Rainey, “A
Process-Driven Tool to Support Online Dispute Resolution,” Proc.
2006 Int’l Conf. Digital Govt. Research, pp. 356-357, 2006.

[15] M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der
Aalst, “Dynamic and Extensible Exception Handling for Work-
flows: A Service-Oriented Implementation,” BPM Center Report
BPM-07-03, BPMCenter.org, 2007.

[16] E.H. Henneman, R.L. Cobleigh, K. Frederick, E. Katz-Bassett, G.A.
Avrunin, L.A. Clarke, L.J. Osterweil, C. Andrzejewski, K.
Merrigan, and P.L. Henneman, “Increasing Patient Safety and
Efficiency in Transfusion Therapy Using Formal Process Defini-
tions,” Transfusion Medicine Rev., vol. 21, no. 1, pp. 49-57, 2007.

[17] E. Gamma, R. Helm, and R. Johnson, J.M. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1994.

[18] S. Stelting, Robust Java: Exception Handling, Testing and Debugging.
Prentice Hall, 2005.

[19] A. Haase, “Java Idioms: Exception Handling,” Proc. Seventh
European Conf. Pattern Languages of Programs, July 2002.

[20] A. Longshaw and E. Woods, “Patterns for Generation, Handling
and Management of Errors,” Proc. Ninth European Conf. Pattern
Languages of Programs, July 2004.

[21] A. Longshaw and E. Woods, “More Patterns for the Generation,
Handling and Management of Errors,” Pattern Languages of
Programs, July 2005.

[22] J.O. Coplien, “A Development Process Generative Pattern
Language,” Proc. European Conf. Pattern Languages of Programs,
1994.

[23] S.W. Ambler, Process Patterns: Building Large-Scale Systems Using
Object Technology. Cambridge Univ. Press, 1998.

[24] W. van der Aalst, A. ter Hofstede, B. Keipuszewski, and A.P.
Barros, “Workflow Patterns,” Distributed and Parallel Databases,
vol. 14, no. 3, pp. 5-51, July 2003.

[25] W. van der Aalst, A. ter Hofstede, B. Keipuszewski, and A.P.
Barros, “Advanced Workflow Patterns,” Proc. Seventh Int’l Conf.
Cooperative Information Systems, O. Etzion and P. Scheuermann,
eds., pp. 18-29, 2000.

[26] N. Russell, A. ter Hofstede, D. Edmond, and W. van der Aalst,
“Workflow Data Patterns: Identification, Representation and Tool
Support,” Proc. 24th Int’l Conf. Conceptual Modeling, L. Delcambre
et al., eds., pp. 353-368, 2005.

[27] N. Russell, W. van der Aalst, A. ter Hofstede, and D. Edmond,
“Workflow Resource Patterns: Identification, Representation and
Tool Support,” Proc. 17th Conf. Advanced Information Systems Eng.,
O. Pastor and J.F. e Cunha, eds., pp. 216-232, 2005.

[28] N. Russell, W. van der Aalst, and A. ter Hofstede, “Exception
Handling Patterns in Process-Aware Information Systems,”
BPM Center Report BPM-06-04, BPMCenter.org, http://
www.workflowpatterns.com/documentation/documents/BPM-
06-04.pdf, 2006.

[29] L.J. Osterweil, “Software Processes Are Software, Too,” Proc.
Ninth Int’l Conf. Software Eng., pp. 2-13, 1987.

[30] OMG, Unified Modeling Language, Superstructure Specifica-
tion, Version 2.1.1, http://www.omg.org/spec/UML/2.1.1/
Superstructure/PDF/, 2010.

[31] OMG, Business Process Modeling Notation (BPMN) Version 1.2,
http://www.omg.org/spec/BPMN/1.2, 2010.

[32] A. Wise, “Little-JIL 1.5 Language Report,” technical report, Dept.
of Computer Science, Univ. of Massachusetts, 2006.

[33] A.G. Cass, S.M. Sutton, and L.J. Osterweil, “Formalizing Rework
in Software Processes,” Proc. Ninth European Workshop Software
Process Technology, pp. 16-31, 2003.

[34] Object Management Group (OMG), “Software Process Engineer-
ing Meta-Model, Version 2.0,” technical report, http://www.omg.
org/docs/formal/08-04-01.pdf, 2008.

[35] Eclipse Process Framework (EPF), http://www.eclipse.org/epf,
2010.

[36] R.K.L. Lo, S.S.G. Lee, and E.W. Lee, “Business Process Manage-
ment (BPM) Standards: A Survey,” Business Process Management J.,
vol. 15, no. 5, 2009.

[37] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi, “Specification and
Implementation of Exceptions in Workflow Management Sys-
tems,” ACM Trans. Database Systems, vol. 24, no. 3, pp. 405-451,
1999.

[38] C. Hagen and G. Alonso, “Exception Handling in Workflow
Management Systems,” IEEE Trans. Software Eng., vol. 26, no. 10,
pp. 943-958, Oct. 2000.

[39] S. Nepal, A. Fekete, P. Greenfield, J. Jang, D. Kuo, and T. Shi, “A
Service-Oriented Workflow Language for Robust Interacting
Applications,” Proc. Move to Meaningful Internet Systems ’05: Int’l
Conf. Cooperative Information Systems, Int’l Conf. Distributed Objects
and Applications, and Conf. Ontologies, DataBases, and Applications of
Semantics, pp. 40-58, 2005.

[40] “Web Services Business Process Execution Language Version 2.0,”
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf, Apr.
2007.

[41] F. Curbera, R. Khalaf, F. Leymann, and S. Weerawarana,
“Exception Handling in the BPEL4WS Language,” Proc. Conf.
Business Process Management, 2003.

LERNER ET AL.: EXCEPTION HANDLING PATTERNS FOR PROCESS MODELING 21

[42] P. Fong and J. Brent, “Exception Handling in WebSphere Process
Server and WebSphere Enterprise Service Bus,” http://
www.ibm.com/developerworks/websphere/library/techar-
ticles/0705_fong/0705_fong.htm, 2010.

[43] A. Avi!zienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing,”
IEEE Trans. Dependable and Secure Computing, vol. 1, no. 1, pp. 11-
33, Jan.-Mar. 2004.

[44] M. Golani and A. Gal, “Flexible Business Process Management
Using Forward Stepping and Alternative Paths,” Business Process
Modeling, pp. 48-63, Springer, 2005.

[45] J. Li, Y. Mai, and G. Butler, “Implementing Exception Handling
Policies for Workflow Management System,” Proc. 10th Asia-
Pacific Software Eng. Conf., 2003.

[46] L. Zeng, H. Lei, J.-J. Jeng, J.-Y. Chung, and B. Benatallah, “Policy-
Driven Exception-Management for Composite Web Services,”
Proc. Seventh IEEE Int’l Conf. E-Commerce Technology, pp. 355-363,
July 2005.

[47] M. Schäfer, P. Dolog, and W. Nejdl, “An Environment for Flexible
Advanced Compensations of Web Service Transactions,” ACM
Trans. Web, vol. 2, no. 2, pp. 1-36, Apr. 2008.

[48] OMG, OCL: Object Constraint Language 2.0, http://www.omg.
org/spec/OCL/2.0/PDF, 2010.

[49] S.A. White and D. Miers, BPMN Modeling and Reference Guide,
L. Fischer, ed. Future Strategies, Inc., 2008.

[50] B.S. Lerner, “Verifying Process Models Built Using Parameterized
State Machines,” Proc. ACM SIGSOFT Int’l Symp. Software Testing
and Analysis, G. Rothermel, ed., pp. 274-284, 2004.

[51] A. Wise, A. Cass, B.S. Lerner, E. McCall, and S. Sutton, “Using
Little-JIL to Coordinate Agents in Software Engineering,” Proc.
15th Int’l Conf. Automated Software Eng., pp. 155-163, 2000.

Barbara Staudt Lerner received the PhD
degree from Carnegie Mellon University. She is
an associate professor at Mount Holyoke College
in Massachusetts. Her research interests include
software process and software design.

Stefan Christov is currently working toward
the graduate degree at the Lab for Advanced
Software Engineering Research (LASER) in the
Department of Computer Science at the Uni-
versity of Massachusetts Amherst. His research
interests include validation of formal process
definitions, process modeling languages, ex-
ception handling patterns in processes, and
how all of the above can be used to support
continuous process improvement. He is a

student member of the IEEE.

Leon J. Osterweil is a professor in the
Department of Computer Science, the codirector
of the Laboratory for Advanced Software En-
gineering Research (LASER), and the founding
codirector of the Electronic Enterprise Institute,
all at the University of Massachusetts Amherst,
where he also served as interim dean of the
College of Natural Sciences and Mathematics
from 2001-2005. Previously, he was a professor
in the Computer Science Department at the

University of California, Irvine, and the chair of the Computer Science
Department at the University of Colorado, Boulder. He was the founding
director of the Irvine Research Unit in Software (IRUS) and Southern
California SPIN. He was awarded the ACM SIGSOFT Outstanding
Research Award for Lifetime Excellence in Research in 2003. His
ICSE 9 paper was awarded a prize as the most influential paper of
ICSE 9, awarded as a 10-year retrospective. He is a fellow of the ACM.
He is a member of the editorial boards of the IEEE Transactions on
Software Engineering, Automated Software Engineering, International
Journal of Software and Informatics, and Software Process Improve-
ment and Practice. Previously, he was on the editorial board of the ACM
Transactions on Software Engineering Methods and IEEE Software. He
has been the program committee chair for the 16th International
Conference on Software Engineering, the Second International Sympo-
sium on Software Testing, Analysis and Validation, the Fourth
International Software Process Workshop, the Second Symposium on
Software Development Environments, and both the Second and Fifth
International Conferences on the Software Process. He was also the
general chair of the Sixth ACM Sigsoft Conference on the Foundations
of Software Engineering and the 28th International Conference on
Software Engineering (ICSE ’06). He has consulted for such organiza-
tions as IBM, Bell Laboratories, SAIC, MCC, TRW, and SEI’s Process
Program Advisory Board. He is a member of the IEEE.

Reda Bendraou received the PhD degree in
computer science in 2007 from the University of
Pierre & Marie Curie, Paris, France, where he is
an associate professor. His research interests
focus on Model-Driven Development ap-
proaches applied to software process modeling
and execution, OO methodologies and UML
model executability, and semantics. He is also
an OMG member. He participates in the
standardization efforts of SPEM2.0, the OMG

standard dedicated to software process modeling, and is part of its
Finalization Task Force.

Udo Kannengiesser received the PhD degree
from the Key Centre of Design Computing and
Cognition, University of Sydney, Australia. He is
a member of the software engineering research
team at NICTA, Australia’s Centre of Excellence
for information and communication technology.
His research focuses on models of designing
products and processes, the function-behavior-
structure ontology, agent-based design systems,
and interoperability.

Alexander Wise is a senior software engineer
in the Laboratory for Advanced Software
Engineering Research (LASER), Department
of Computer Science, University of Massachu-
setts Amherst. His research interests include
tools and techniques for the construction of
collaborative and multi-agent systems.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. XX, XXXXXXX 2010

